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The quantity and quality of astronomical data has advanced to the point in which
truly detailed and nuanced theoretical models are necessary. In the field of exo-
planetary dynamics, it has become increasingly clear that we must account for the
effects of planetary structure when considering the dynamics of the system. In
other words, Planets are not Points. This dissertation details my contributions to
the field of exoplanet dynamics, split into three subcategories:

e Part I (Chapters 2 - 3): Numerical Methods & the N-Body Problem. These
chapters discusses the numerical methods I have developed to study the
analytically unsolvable N-Body problem, and details their implementation
into the popular open-source software REBOUND.

e Part II (Chapters 4 - 5): Spin-Orbit Dynamics. These chapters explore my
work into the complex interplay between a planet’s spin and it’s motion,
driven by tidal forces. I present an origin story for the large obliquity of
the planet Uranus, and I show that such large obliquity can also explain the
anomalously low density of the super-puff planet HIP-41378 f.

e Part III (Chapter 6). Coupled Planetary Structure and Dynamical Evolution.
This chapter details my work into self-consistent evolution of a planet’s
interior structure and the system’s dynamical evolution. I present a case
study of the intriguing HAT-P-11 system, a dynamical puzzle that can only
be explained via truly self-consistent evolution.
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Chapter 1

Introduction

"It's a dangerous business, Frodo, going out your door. You step onto the road,
and if you don’t keep your feet, there’s no knowing where you might be swept
off to."

— Bilbo Baggins



1.1 Background

The incredible diversity of exoplanet systems discovered over the past two decades
has illuminated the shortcomings of our understanding of planetary system for-
mation. For millenia, our own solar system was the sole data point that guided
our theoretical models. Generally, this paradigm of small rocky planets close in
and gas giants further out, all on circular orbits, was successfully reproduced
and thought to be well understood. Exoplanets, on the other hand, are seen in
a wide configuration of bizarre orbits that exist in significant tension with our
understanding of the solar system’s formation. Astronomy as a field has since
scrambled to paint a new picture of planetary system formation, one that could
reconcile these strange worlds with theoretical understanding.

Today, the consensus of the field is that gravitational interactions between
pairs of planets are the culprit behind many anomalous systems that we see. The
interactions can be gentle and occur over millions or billions of years without
compromising the long-term stability of the system. They can also be violent, and
in this case may result in planets colliding or being fully ejected from the spheres of
influence of their host stars. Taken together, these effects are known as dynamical
sculpting, and the field of planetary dynamics encompasses the study of planetary
motion as a consequence of interactions between stars, planets, and minor bodies.
Planetary dynamics has blossomed into a rich and complex field; and has offered
compelling origins for many of the bizarre systems seen in the observational data.

Upon first glance, it seems a reasonable assumption to ignore a planet’s actual
physical extent when analyzing its motion. Space is vast, and the distance between
bodies dwarfs the size of these bodies. From this scale, planets appear little more
than points. However, in recent years it has become clear that this approximation
is often insufficient. The only way to explain some of the phenomena we see in
nature is to account for effects such as a planet’s spin, flattening due to rotation,
or heating in the deep interior from tidal forces. The most brilliant minds in
the field have made tremendous strides in developing simple, elegant models
that have made predictions with truly astounding foresight. For instance, Peale
et al. (1979) asserted that Jupiter’s moon Io should have a molten surface from
intense volcanism driven by tidal heating due to its close proximity to Jupiter, a
prediction that was verified by the Voyager probe just days later. With cutting-
edge instruments such as JWST that have launched in past few years, observational
evidence to verify these models for exoplanetary systems is now within our grasp.
It truly is an exciting time to study exoplanets.

In this thesis, I detail my own contributions to the field of planetary dynamics.
I approach this topic from a computational and theoretical perspective. I have
actively developed novel numeric tools and directly applied them to a wide range



of dynamical topics. Simultaneously, I am closely connected to the observational
data. Anomalies in the data, from population-level trends to specific strange
systems, have guided my theoretical explorations. This Introduction serves to lay
crucial groundwork to interpret my results and place them in the greater context
of the field. In Section 1.2 I discuss some of the challenges in studying planetary
motion. In Section 1.3 I provide context on some of the most bizarre exoplanetary
systems known to date. In Section 1.4 I explicitly map out the effect of planetary
structure on system dynamics. Finally, in Section 1.5 I give an overview of the
structure of this thesis.

1.2 The Gravitational N-Body Problem

The gravitational N-Body problem is simple in concept, but surprisingly difficult
in execution. The problem is defined as such: given the initial positions and
velocities of N bodies, predict their new positions and velocities at some arbitrary
point in time under the influence of gravity. At first glance, this does not seem
like a difficult problem — the differential equations governing the motion of bodies
under the influence of gravity are relatively simple. If we make the simplifying
assumption that planets are points, the dynamics of the system are completely
described by the following equation:

N
. G(m; + m]‘)
J# 1

where d; is the position vector and m; the mass, associated with the ith particle of
the system.

If N = 2, we call this problem the Kepler problem. In this case we are in luck
— this problem is exactly solved (Goldstein et al., 2002). The solution is fairly
intuitive and straightforward: in the Kepler problem, the two bodies move about
each other on so-called Keplerian orbits. The specific orbit can be uniquely and
completely described with just six numbers, called the orbital elements (Murray
& Dermott, 2000):

e g, the semimajor axis. This describes the size of the orbit, essentially the
average distance between the two bodies.

e ¢, the eccentricity. This describes how circular the orbit is. If e = 0, the orbit
is perfectly circular. If e ~ 1, the orbit is a very stretched out ellipse.

e i, the inclination. This is an angle that describes how tilted the planet’s orbit
is, relative to some reference plane. In this thesis, i will typically describe the



angle between the plane defined by the star’s spin axis and the orbit of the
planet.

e (), the longitude of ascending node. This angle describes the horizontal
orientation of the orbit.

¢ w, the argument of periapsis. This indicates the direction the orbit points.

e f, the true anomaly. This shows where the orbiting object is along its path at
a specific time.

This result is obviously limited in scope, but nonetheless provides powerful
intuition for most planetary systems where the central star is typically massive
enough to dominate the system’s dynamics. To zeroth order, a set of Keplerian
orbits that ignore the contributions of the other planets can indeed describe the
dynamics of a multi-planet system.

If N = 3, the problem becomes vastly more complex. This is the famous
three-body problem, and technically an exact analytic solution exists. Sundman
(1913) proved that the problem could be exactly solved in the form of a power
series. Unfortunately, this solution is completely infeasible — for astronomical
contexts, the exact analytic solution would need to include upwards of 1030000
terms (Belorizky, 1930). Thus, an exact analytic solution to the N-body problem
eludes us in practice.

1.2.1 Analytic Theory

While not the main focus of this dissertation, it would be remiss not to mention
the tremendous progress made by analytic theorists with pen and paper to de-
velop highly nuanced analytic approximations of the N-body problem that offer
incredible physical intuition.

An often reasonable assumption in planetary dynamics is that the central star
is the dominant contribution to the motion of its planets. In this case, a powerful
approximation is to consider the effect of the other planets as small deviations
from the path which would otherwise be completely dictated by the star’s in-
fluence. The addition of extra terms to describe these minor perturbations are
known as the disturbing function, often expressed as a series expansion in orbital
elements (e.g. Kaula, 1962). The disturbing function can be made arbitrarily nu-
anced with consideration of additional higher-order terms with corresponding
increasing mathematical complexity. However, the problem can be made tractable
by realizing for certain problems, only certain terms in the disturbing function
are relevant over long timescales. Averaging out the appropriate inconsequential



terms is the gate and key to understanding a number of relevant problems in
planetary dynamics, and this builds the foundation of so-called secular theory.

The term “secular” arises from the Latin word saeculum, which means century
(Murray & Dermott, 2000). Secular theory therefore describes the motion of plan-
etary systems on timescales far longer than an orbit. One can think of secular
theory as modeling a planet not as a point mass traveling around its star in an or-
bit, but rather “smearing out" the motion of the planet into a wire. Secular theory
thus predicts the stretching and squeezing of the wire as a planet’s orbit oscil-
lates in eccentricity and inclination. Great strides have been made in solar system
science with secular theory, for which a fantastic review is provided by Laskar
(2012). In brief, an elegant solution for the motion of the planets was derived by
Lagrange (1778) and Laplace (1784), where periodic oscillations in eccentricity and
inclination in a planet’s orbit are driven by a sum of forcing terms from all other
companions in the system. Lagrange-Laplace secular theory has been improved
upon by numerous authors since (e.g. Brouwer & van Woerkom, 1950; Wisdom,
1985; Laskar et al., 2004) and has delivered numerous deep insights into the dy-
namical nature of the solar system (e.g. Ward, 1974; Morbidelli & Henrard, 1991;
Hinnov, 2018).

1.2.2 Numerical Methods

Analytic theory is a powerful tool for building physical intuition, but is an inher-
ently limited framework. Most significantly, analytic theory cannot probe chaos, or
the extreme sensitivity of physical systems to minute changes in initial conditions.
In addition, by nature of the averaging schemes used to analyze the disturbing
function, it is nearly impossible to study problems that involve rapid change of
the system on timescales less than an orbit such as violent planet-planet scattering.
The best way to study these systems is by numerically and approximately inte-
grating the equations of motion, for which an in-depth review is given by (Hairer
et al., 2006). Much of the work discussed in this thesis is based upon numerical
integration methods, so I provide a brief overview of numerical integration in the
field of planetary dynamics.

The practice of numerical integration has existed since time immemorial. For
instance, ancient Babylonians used numerical techniques to predict Jupiter’s trajec-
tory across the night sky (Ossendrijver, 2016). Over the course of millennia, these
methods have been greatly refined in both speed and accuracy. Algorithms such
as Runge-Kutta and Bulirsch-Stoer (Press et al., 2002) are flexible, accurate and fast
enough to efficiently analyze the motion of virtually any system on timescles of
millions of years. Today, the gold standard for numerical integration of astrophys-
ical systems is IAS15 (Rein & Spiegel, 2015), based on the algorithm of Everhart
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Figure 1.1. Progress made in the efficiency of N-Body simulations over the past century.
Starred points are significant simulations in the literature. Figure credits to Sam Hadden.

(1985). IAS15 achieves theoretically optimal error growth over time, and system-
atic errors in the algorithm are kept well below machine precision. These are
powerful tools to accurately study the dynamical evolution of arbitrary systems —
indeed, in many cases they are the only available tools.

Numerical methods always come with a fundamental trade-off. Typically, this
trade-off is between speed and accuracy — the more accurate an integration, the
greater the computational cost. However, certain schemes are able to maintain
both high speed and accuracy, so long as certain assumptions are met. Wisdom
& Holman (1991) developed a revolutionary scheme with incredible speed and
accuracy in the limit of a dominant central mass — again, typically a reasonable
assumption for planetary systems where the mass of the star dwarfs all other bod-
ies. The “Wisdom-Holman" scheme allows for accurate integration of planetary
systems on timescales of billions of years. The scheme has been vastly improved
upon since its inception — in fact, the most recent edition, WHFAST512 (Jahaveri
et al.,, 2023), allows for solar system integrations over five billion years in just
over a day. Figure 1.1 summarizes the progress made over the past century in
numerical simulations, as both computer hardware and computational methods
have tremendously improved.

Many of the numerical methods described in this section, including Bulirsh-
Stoer, IAS15, and WHFAST512, are included in the popular open-source REBOUND
software package (Rein & Liu, 2012). A great deal of this thesis work was per-
formed with the tools included in REBOUND, which has served as an invaluable tool
for the astronomy community as a whole.


https://shadden.github.io/nbody_history/

1.3 The Diversity of Exoplanetary Systems

Armed now with the tools necessary to study planetary motion, in this section
I motivate the need for such study by providing several examples of observed
exoplanetary system configurations that can only be explained via dynamical
sculpting. These are but a few illustrative examples — the diversity of exoplanetary
systems is vast, and in nearly all of them some dynamical process is critically at

play.

1.3.1 Eccentric and Misaligned Orbits

The eight planets of our solar system travel about the Sun on near-circular (e ~ 0)
and aligned (i ~ 0°) orbits. Any deviation from the paradigm is curious, and
represents a dynamical puzzle that must be solved — and indeed, we see many
such dynamical puzzles in the exoplanet population. Figure 1.2 is an example
of one such strange system. Planets such as HD 80606b (Naef et al., 2001) are
seen on extremely eccentric orbits that resemble long-period comets more than
the planets of our solar system. A growing population of polar planets that orbit
perpendicular to the orientation of their host stars (Albrecht et al., 2021) has been
discovered in recent years, a trend which has not yet been fully understood. In
fact, some peculiar systems such as HAT-P-11 (Yee et al., 2018) and 14 Herculis
(Bardalez Gagliuffi et al., 2021) host multiple planets that are both eccentric and
misaligned. It is believed that these strange orbits are imprints of a dynamically
violent past — close encounters between pairs of planets result in scattering one or
both planets from well-behaved circular orbits to the eccentric misaligned orbits
we observe. Formation theories must be able to account for such systems, and
understanding the process of planet-planet scattering is critical to this end.

1.3.2 Hot Jupiters

The origin of hot Jupiters is the oldest mystery in exoplanet science. The very first
exoplanet to be discovered, 51 Pegasib (Mayor & Queloz, 1995), was a gas giant on
a four day orbit —if placed in our solar system, it would sit well within Mercury’s
orbit. Over the years around 500 such “hot Jupiter" planets have been discovered,
which stand in stark contrast with our understanding of the solar system — there are
obviously no gas giant planets within the orbit of Mercury. In fact, their existence
lies in tension with planet formation theory in general. Planets are believed to
form from the gas and dust of the primordial circumstellar disks that surround
young stars. This close to the host star, there does not exist sufficient material
to form gas giant planets (Dawson & Johnson, 2018). Hence, these hot Jupiter
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Figure 1.2. An example of a bizarre exoplanet system configuration, which hosts two
planets that are both eccentric and misaligned. This stands in stark contrast with our own
solar system, which hosts eight planets on circular and aligned orbits. It is believed that
dynamical processes such as planet-planet scattering are responsible for generating such
strange systems. Figure adapted from Lu et al. (2024a).

planets are believed to have formed significantly further from their host stars, and
migrated to their present-day locations — typically driven by perturbations from a
nearby stellar companion (Naoz et al., 2012).

1.3.3 Resonant Chains

A surprising fraction of multi-planet systems are found in or near mean-motion
resonances, where pairs of successive planets have orbital periods in near-integer
ratios (e.g. Petrovich et al., 2013). The most striking of these systems are the so-
called “resonant chains", which consist of systems in which each successive pair of
planets is in a mean motion resonance. Resonant chain systems such as TRAPPIST-
1 (Gillon et al., 2017), TOI-1136 (Dai et al., 2023) and HD 110067 (Lammers & Winn,
2024a) have each garnered immense interest upon their discoveries. Such systems
naively are unexpected, since there is no reason to expect planets to end up in neat
integer period ratios. Even more intriguingly, these systems are often compact and
typically dynamically unstable — numerical simulations show compact resonant
chains violently ejecting many of their planets far within the expected system
lifetimes. It has been shown that planetary migration, driven by interactions with
the primordial circumstellar disk (e.g. Tamayo et al., 2017), can both preferentially
deliver multi-planet systems into resonant chain configurations and ensure their
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Figure 1.3. Schematic representation of the planetary structure effects that are considered
in this dissertation. I discuss deformation from a perfect sphere arising from rotation or
tidal perturbations, and tidal dissipation that arises from friction within a planet.

long-term stability.

1.4 Planetary Structure

So far we have discussed planetary motion in the context of Equation 1.1 only.
But planets are not points, and in many relevant astrophysical cases this approxi-
mation becomes insufficient. For the purposes of this thesis work, two aspects of
planetary structure are important: the planet’s shape, and tidal friction. These are
schematically depicted in Figure 1.3.

1.4.1 Planetary Shape

A perfectly spherical planet has the external gravitational potential of a pure point
particle. However, planets are not perfect spheres. The gravitational potential V
at some point x associated with a planet of arbitrary shape can be expressed as a

volume integral:
G
V(x) = - ﬁgﬁ > dm(r) (12)
|x — 7|

This expression naturally may encompass infinite complexity. For the purposes
of this thesis, I concern myself with only the first-order simplest effects. First and
foremost, planets spin. A spinning planet that is not perfectly rigid will deform
and flatten along its poles. In response to rotation, a planet will become oblate.
A similar deformation also occurs in response to gravitational perturbations from



a companion, be it a host star or a satellite. The gravitational force experienced
on the side of the planet closer to the perturber in question is greater than the
force experienced on the far side. This imbalance also works to stretch the planet
along the line connecting the centers of the planet and its perturber. The resulting
oblateness is called the tidal bulge. To describe the potential arising from this
deformation, Equation (1.2) can be expanded in Legendre Polynomials, assuming
the deformations are spherically symmetric:

GM  GMa*3cos*6 -1

ro J2 r3 2
where 7, 0 are the standard spherical coordinates, a the planet’s equatorial radius,
and J, the gravitational harmonic of degree two that describes the quadrupole-
order deviation from a perfectly spherical potential.

V(r,0) ~ — (1.3)

1.4.2 Tidal Friction

Consider a planet spinning at some rate €, perturbed by a satellite orbiting with
mean motion 1, where ) # n. The satellite would like to raise a tidal bulge on
the planet that points directly along the line of centers connecting the two bodies.
However, planets are dissipative. Particle elements in the planet are carried along
by the planet’s rotation, and cannot instantaneously deform to assume the equi-
librium position of pointing exactly along the line of centers. Hence, if () > n the
tidal bulge leads the line of centers, and if QO < n it lags. The result of this is a tidal
torque, which transfers angular momentum between the planet’s spin and the or-
bit of the satellite. Tidal interactions profoundly influence the long-term evolution
of planetary systems, and it is necessary to invoke orbital evolution driven by tidal
torques to explain many phenomena seen in exoplanetary systems. For instance,
hot Jupiters (as discussed in Section 1.3.2) are believed to have migrated to their
present-day configurations. Typically, this involves tidal forces that slowly shrink
the planet’s orbit over long timescales. In fact, we have caught some hot Jupiters
in the very act of this — for instance, the hot Jupiter WASP-12b has been observed
to have a decaying orbit which has been attributed to tides (Yee et al., 2020).

Of course, this simple tale is not the full story. In reality, the specific response of
a planet to a tidal perturber is an extremely complex function of interior structure.
This is the study of dynamical tides, and many authors have contributed this frame-
work over the years (e.g. Mardling, 1995; Lai, 1997). The framework that I have
described is the equilibrium tide framework, which is elegant in its simplicity and
in many cases is a very good approximation. An in-depth review of equilibrium
tide theory is given in Chapter 3.
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1.5 Thesis Overview
My thesis research can be divided into three distinct parts:

1. Part I details my contributions to numerical orbital methods. Chapter 2
describes the design and implementation of a novel hybrid integrator, TRACE,
specifically designed for fast and accurate integrations of violent planet-
planet scattering. Chapter 3 outlines the implementation of self-consistent
equations of motion detailing the evolution of planetary spin and dynamics
under the influence of tidal forces. Both of these tools are included in the
open-source REBOUND framework.

2. Part II discusses two compelling investigations into spin-orbit coupling, the
complex interplay between planetary structure and motion. In Chapter 4 I
present a novel hypothesis to explain Uranus’ large obliquity, driven by the
outward migration of the putative Planet Nine. In Chapter 5 I comprehen-
sively analyze the dynamical history of the HIP-41378 system, and show that
large planetary obliquity can ultimately masquerade as unusually puffy and
low-density planets.

3. Part III explores my most recent and planned future work of self-consistent
coupled planetary structure and dynamical evolution. Chapter 6 is a detailed
case study of the dynamical history of the HAT-P-11 system, an intriguing
system which presents a dynamical puzzle that is solved only if planetary
structure evolution is accounted for in conjunction with the dynamics.

11



Part 1

Numerical Methods & The N-body
Problem
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Chapter 2

TRACE: a code for Time-Reversible
Astrophysical Close Encounters

" find the great thing in this world is not so much where we stand, as in what
direction we are moving."
— Oliver Wendell Holmes

Adapted From:
Lu. T., Hernandez, D. & Rein, H. 2024, Monthly Notices of the Royal Astronomical
Society, Volume 533, Issue 3, pp.3708-3723
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Abstract

We present TRACE, an almost time-reversible hybrid integrator for the planetary
N-body problem. Like hybrid symplectic integrators, TRACE can resolve close
encounters between particles while retaining many of the accuracy and speed
advantages of a fixed timestep symplectic method such the Wisdom—-Holman map.
TRACE switches methods time-reversibly during close encounters following the
prescription of Hernandez & Dehnen. In this paper we describe the derivation and
implementation of TRACE and study its performance for a variety of astrophysical
systems. In all our test cases TRACE is at least as accurate and fast as the hybrid
symplectic integrator MERCURIUS. In many cases TRACE’s performance is vastly
superior to that of MERCURIUS. In test cases with planet-planet close encounters,
TRACE is as accurate as MECURIUS with a 12x speedup. If close encounters with
the central star are considered, TRACE achieves good error performance while
MERCURIUS fails to give qualitatively correct results. In ensemble tests of violent
scattering systems, TRACE matches the high-accuracy IAS15 while providing a 15x
speed-up. Inlarge N systems simulating lunar accretion, TRACE qualitatively gives
the same results as IAS15 but at a 41x speedup. We also discuss some cases such
as von Zeipel-Lidov-Kozai cycles where hybrid integrators perform poorly and
provide some guidance on which integrator to use for which system. TRACE is
freely available within the REBOUND package.

2.1 Introduction

The N-body problem is one of the most fundamental problems in astronomy.
Conceptually, it is a seemingly simple problem: given the initial positions and
velocities of N particles, can we predict their state at some arbitrary time in the
past or future? In most astronomical contexts, the inter-particle forces are given by
Newton’s laws of gravitation (Newton, 1687). Advancements in our understand-
ing of the N-body problem have shed light on topics as varied as the long-term
secular behavior of the solar system (Laplace, 1775; Lagrange, 1778), the large-scale
structure of the universe (Lemson & Virgo Consortium, 2006), and the dynamics
of globular clusters (Heggie & Hut, 2003), to name but a few.

Despite its conceptual simplicity, solving the N-body problem is extremely
difficult. The two-body problem is exactly solved (Bernoulli, 1775). However,
it is well known that for N > 3 the N-body problem admits no practical general
analytic solution', with solutions either only valid in the limit of certain simplifying
assumptions (Poincaré, 1890) or slow to the point of being completely infeasible in

'Newton implies that the N-body problem is in general unsolvable in his original manuscript.
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practice (Sundman, 1913; Qiu-Dong, 1990). With these constraints of both accuracy
and computation time, to study the N-body problem we must turn to numerical
methods of approximation.

Of particular interest to astronomers is the planetary N-body problem, which
is characterized by a dominant central "star" orbited by many smaller "planets".
Wisdom & Holman (1991)? developed an efficient, accurate and widely used in-
tegrator for the planetary N-body problem by treating the effects of other plan-
ets in the system as perturbations to the dominant Keplerian motion. Improve-
ments on this "Wisdom-Holman" method over the years are described in Saha &
Tremaine (1992, 1994); Wisdom et al. (1996); Laskar & Robutel (2001); Hernandez
& Bertschinger (2015); Rein & Tamayo (2015); Hernandez (2016); Wisdom (2018);
Rein et al. (2019a); Jahaveri et al. (2023). The Wisdom—Holman method is an exam-
ple of a symplectic method, from which many of its desirable characteristics can be
attributed to. Symplectic integrators solve Hamiltonian systems, and are hugely
advantageous because they exactly conserve phase space volumes and Poincaré
invariants (Yoshida, 1993; Hairer et al., 2006). Due to these constraints, they boast
impressive energy error performance over millions of dynamical timescales of
a system, whereas conventional integrators may exhibit significant failures after
only a few. Given that the dynamics of most astrophysical systems are governed
by Hamiltonians (as far as gravity is concerned), symplectic integrators are ideal
for their study. The Wisdom-Holman scheme allowed for feasible computation of
the evolution of planetary systems on Gyr timescales, and its speed and efficiency
have made insights into computationally demanding topics such as the stability
of planetary systems (Holman & Wisdom, 1993; Holman & Wiegert, 1999) and the
precise orbital and obliquity evolution of solar system planets (Touma & Wisdom,
1993; Laskar et al., 2004, 2011) possible.

Wisdom-Holman integrators have become mainstays in celestial dynamics,
but this is not to say they are without their drawbacks. One such shortcoming
is inflexibility: usually symplectic methods use a constant timestep which can-
not be adapted if relevant timescales in the problem change. Focusing on the
Wisdom-Holman method in particular, it fails when the underlying assumption
of a dominant Keplerian orbit is challenged. This occurs primarily when there is
a close encounter between two pairs of bodies and inter-particle forces dominate
instead. In practice, this means Wisdom-Holman integrators are only effective for
problems where all planets maintain stable Keplerian orbits for the duration of the
simulation. There are a few ways to circumvent this issue. We will focus on the
method of hybrid symplectic integrators. Schemes such as MERCURY/MERCURIUS
(Chambers, 1999; Rein et al., 2019b) and modified SYMBA (Duncan et al., 1998;

ZKinoshita et al. (1991) developed a similar integrator independently.
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Levison & Duncan, 2000) are able to achieve acceptable levels of accuracy while
retaining many of the long-term error and speed benefits of the Wisdom—-Holman
map in uses cases when the traditional map fails. This is achieved by using
maps utilizing more flexible conventional (but non-symplectic) integrators such
as Bulirsch-Stoer (Press et al., 2002) or IAS15 (Rein & Spiegel, 2015) upon close en-
counters, switching between integration methods based on some predetermined
switching function. Hybrid symplectic integrators have allowed for study of top-
ics such as planetary/lunar accretion (Canup, 2004; Raymond et al., 2006), the
dynamical history of our solar system (Morbidelli et al., 2005; Tsiganis et al., 2005;
Gomes et al., 2005), and the imprint of instabilities on the demographics of exo-
planetary systems (Chatterjee et al., 2008; Ford & Rasio, 2008; Lissauer et al., 2011),
all topics involving regimes where the Wisdom-Holman method breaks down
but are simultaneously too computationally demanding for conventional integra-
tors. The hybrid integrators listed are symplectic, which come with advantages
and disadvantages. Maintaining symplecticity ensures good long-term error per-
formance, but also carries with it much of the inflexibility described before. This
primarily manifests in the choice of switching function, which in practice can often
be restrictive or cumbersome.

In this work, we take an alternative approach to constructing a hybrid inte-
grator. Our integrator is not symplectic, but instead is time-reversible. While the
breadth of study and literature on time-reversible integration methods is small in
comparison to that of symplectic methods (Hut et al., 1995; Hairer et al., 2006, 2009;
Dehnen, 2017; Hernandez & Bertschinger, 2018; Boekholt et al., 2023), in principle
an exactly time-reversible scheme shares many of the long-term beneficial error
properties as a symplectic integrator. While many time-reversible schemes have
proven computationally infeasible for practical purposes, in the recent work of
Hernandez & Dehnen (2023) a simple time-reversible algorithm was developed
with comparable error and computational performance to symplectic methods.

Based on the ideas of Hernandez & Dehnen (2023) we present TRACE, an al-
most time-reversible hybrid integrator for the planetary N-body problem. TRACE
is not exactly symplectic — see Appendix 2.10 for an analysis. The TRACE algo-
rithm and switching scheme is conceptually simple, flexible and easy to modify.
It is capable of accurately integrating close encounters between any pair of bod-
ies in the planetary N-body problem, including the central star. We have tested
TRACE on a variety of realistic astrophysical systems. We have further developed
switching functions beyond those discussed in Hernandez & Dehnen (2023), per-
formed statistical tests on ensembles of chaotic scattering systems, and tested the
performance limits of our code on large N systems. In all cases, TRACE matches
or exceeds the accuracy of previous hybrid integrators such as MERCURIUS, and
admits speedups of up to 13x. TRACE is publicly available in the REBOUND N-body
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package (Rein & Liu, 2012). The structure for this paper is as follows. In Section
2.2 we provide background on the construction of integrators for the planetary N-
body problem. In Section 2.3 we discuss the current hybrid integration techniques
currently available and derive the TRACE equations of motion. In Section 2.4 we
discuss the TRACE switching scheme. In Section 2.5 evaluate TRACE’s performance
on realistic astrophysical systems one might encounter including highly eccentric
orbits, planet-planet scattering and planetesimal accretion. In Section 2.6 we dis-
cuss potential improvements to the TRACE algorithm. In Section 2.7 we draw our
conclusions, and provide specific guidelines for when TRACE should be used over
other integrators.

2.2 Equations of Motion of the Planetary N-Body Prob-
lem

In this section we introduce the equations of motion used for the planetary N-body
problem, and review the construction and benefits of the Wisdom-Holman map.

2.2.1 Constructing Hamiltonian Maps

We will first provide a brief overview of constructing maps for conservative Hamil-
tonian systems in general. Consider some system governed by the Hamiltonian
‘H. Denote the state of the system in canonical coordinates by the vector z = (g, p).
Hamilton’s equations dictate the time-evolution of z,

dz _

dt
Where t is time. The Lie operator H is defined Hz = {z, H}. We can thus rewrite
Equation (2.1),

{z, H}, (2.1)

dz
a = 7‘{2, (22)

This differential equation admits the solution,

2(t + h) = &M z(t), (2.3)

Here h is referred to as the time step and ¢ is defined as the propogator or map®.
While this is indeed an exact solution for the problem, in many cases this is difficult
to solve and impractical. One useful path forward is operator splitting: in many

SExplicitly, the propagator is defined by the Taylor series eH = Yoo 7%
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Hamiltonian systems, we may decompose H into the sum of sub-Hamiltonians,
each corresponding to some component of the motion. A simple scheme is to split
the potential and kinetic components,

H=T(p) + V(. (2.4)

In practice, these sub-Hamiltonians are often significantly simpler to solve, and in
many cases admit analytic solutions where the full Hamiltonian does not. The idea
behind operator splitting is that the true equation of motion may be approximated
by first evolving the system under T, and then V. Maps may be constructed
through different splittings and applications of the individual propagators over
various timesteps. Splitting schemes are not exact solutions, but are often the only
viable way to study such systems. The error in a splitting scheme can be analyzed
via the Baker-Campbell-Hausdorff (BCH) formula (Campbell, 1897; Baker, 1905;
Hausdorff, 1906; Hairer et al., 2006). For propagators A, B, and C satisfying
C = A +B, the local error in the canonical coordinates over one step of the splitting
scheme can be expressed as,

Error = (ehc - ehAehB) z

(2.5)
= %Z[A, Blz + O(H),

where [A, B] = AB — BA is the commutator. Higher order terms in & depend on a
series of nested commutators, so the error in a splitting scheme arises from pairs
of propagators not commuting. For instance, the well-known leapfrog method
is given ¢ ~ ¢37TetVeiT By using the convenient symmetric form of the BCH
formula, we can calculate the error in one timestep of leapfrog,

Y,
Leapfrog Error = (ehH — ezTthezT) z

Lo (2.6)
= oz (0,17, 111 = 21T, [T, 711) 2 + O(”).

Note that symmetry ensures no even powers of /i survive in this expansion. Errors
that depend higher power of /i are preferable as the timestep is generally small.

2.2.2 The Wisdom-Holman Map

The planetary N-body problem considers a system of N planets with a dominant
central mass. The central mass is denoted with subscript 0, and the other planets
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1,2,...,,N. The well-known Hamiltonian of the system may be written,

H = Z T GY, lmm] 2.7)

0<i 0<i<j

with g,p the canonical coordinates/momenta and m the masses. We make an
important note at this point: this is the only Hamiltonian considered in this work.
We will rewrite this Hamiltonian many times for convenience, but all will be
exactly equal to Equation (2.7).

Of course, the full N-body Hamiltonian is very difficult to numerically solve.
The brilliance of the Wisdom—-Holman map is in its clever splitting of the Hamil-
tonian into a dominant and a much smaller part which may be considered a
perturbation. Specifically, the gravity of the Sun is considered the dominant part
and the influence of the other planets in the system are considered perturbations.
In this sense, the Wisdom—-Holman map approximates the planetary N-body prob-
lem into N individual Kepler problems, one for each planet. It is clear why this
is effective upon inspection of the BCH formula. If the Hamiltonian is split into
two parts H = H; + H, such that H, = eH; with € < 1, then the local error over
one timestep will scale as O(eh?), in comparison with O(®) as in standard leapfrog
(Wisdom & Holman, 1991; Tremaine, 2023). This allows Wisdom—-Holman inte-
grators to take comparatively large timesteps while maintaining small errors. The
resulting speed and accuracy has allowed for long-term integrations of planetary
systems on timescales comparable to the age of the solar system.

We will make use of democratic heliocentric coordinates (DHC) Q; and mo-
menta P;. For more in-depth discussion of this coordinate system see Duncan
et al. (1998); Hernandez & Dehnen (2017); Rein & Tamayo (2019), as well as Ap-
pendix 2.8. Note that the Wisdom-Holman map was originally derived in Jacobi
coordinates instead of DHC - we use the DHC coordinate systemm because it can
effectively deal with orbit crossings. Our state vector is thus defined:

zZi = (Qi/ Pi)- (2-8)

The advantage of DHC is that it allows us to rewrite eq. (2.7) as a sum of four
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terms, each with a clear physical interpretation,

pé Gml-mj
?{_zmtot—i_z_mo[z ] Z Qij

O<i<j
——
oo H (2.9)
P> Gmom
+Z i Ny, .
>0 zmi Qi

Hy

We use underbraces to mark the sub-Hamiltonians for clarity. Here H, describes
the motion of the center of mass, Hj is called the jump term and describes the
barycentric omtion of the star, H; describes planet-planet interactions, Hx the
pure Keplerian motion of the planets around the central body. 1, = Zf\io m; is the
total mass of the system), and Q;; = Q; — Q;. In DHC, the splitting of the Wisdom-~
Holman map is given by the following composition, which uses the splitting in
(2.9):

M = e2HIeZH]ehHOehHKezﬂ]ezwl (210)

Each of the sub-Hamiltonians Hy, H;, H; and Hx may individually be solved
analytically. The equations of motion governed by H, H; and H; are trivially
solved, while Hy corresponds to Kepler’s equations which can be solved with a
Kepler solver (Danby, 1992).

2.3 Hybrid Integrators

There are a variety of relevant and interesting situations in many astrophysi-
cal systems where this assumptions underlying the Wisdom-Holman integrator
break down. As mentioned previously, more conventional integrators are better
equipped to handle these failure cases, but lose the long-term error benefits of
Wisdom-Holman.

Ideally, we would like to use the Wisdom-Holman scheme when possible to
leverage its considerable speed advantages, and use a more conventional, flexible
integrator when the assumptions inherent to the Wisdom-Holman map break
down in the interest of accuracy. This is the idea behind hybrid integrators. In this
section, we will enumerate various situations where the Wisdom-Holman map
fails, and discuss the existing solutions. At the end, we will introduce our map
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TRACE, which is capable of effectively handling all such pitfalls.

2.3.1 Planet-Planet close encounters

If two planets undergo a close encounter, H; will dominate over Hy. The Wisdom-—
Holman scheme breaks down here. A solution was proposed by Chambers (1999)
in their code MERCURY by smoothly moving terms from the interaction term to the
Kepler term. This ensures that H is always the dominant term in the Hamiltonian.
A modified version of this scheme is implemented in REBOUND in the form of the
hybrid symplectic integrator MERCURIUS (Rein et al., 2019b). While Hk no longer
exactly corresponds to Kepler’s equation and cannot be analytically solved, it
is possible to approximate accurately and efficiently with a more conventional
integration techniques. MERCURY uses a Bulirsch-Stoer scheme while MERCURIUS
uses IAS15, an adaptive-timestep 15th-order non symplectic integrator that serves
as the default integrator in REBOUND. Explicitly, the MERCURIUS map is obtained by
splitting eq. (2.7), for use in map (2.10), in the following way,

i#0
—_—— —
Ho H,
Gmim]-
- 1-K(Q;)
0<i<j ij [ ] ] (2.11)
Hi
P2 Gmom; Gmm;
¥ ( - l)— "K(Qy)-
;‘ 2m Q 0<i<j Qi :
Hy

Note that this is exactly equal to Equation (2.9) as the terms with K(Q,;) cancel, but
we have redefined the sub-Hamiltonians that affect the splitting scheme Equation
(2.10). Here, the center of mass and jump terms remain the same as those of
the Wisdom-Holman map. Meanwhile, the Kepler and interaction terms are
now modulated by the switching function K(Q;;), a mathematically smooth scalar
function that is purely a function of the pairwise distance between the two bodies
in question and takes values € [0, 1]. MERCURIUS offers several built-in switching
functions, but all smoothly switch from K = 1 at close encounters to K = 0 very
far from an encounter. Note that for K = 0, the standard Wisdom-Holman map is
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recovered.

2.3.2 Pericenter Approach

The Wisdom-Holman map in DHC encounters issues for massive particles on
orbits with very close pericentric distances*. This is because Hx does not exactly
represent a Keplerian orbit, since it incorporates a nonphysical central gravitating
mass — Hj must be incorporated as well to correct. Hence, when H; becomes very
large during close pericenter approaches the Wisdom-Holman method fails as well
(Duncan et al., 1998; Rauch & Holman, 1999). In principle, it is possible to avoid
this issue by resolving the pericenter with a small enough timestep (Wisdom, 2015).
However, since Wisdom-Holman uses a fixed timestep this worst-case timestep
must be applied to the entire problem which comes at a significant computational
cost. Neither MERCURY nor MERCURIUS allow for close pericenter approaches.

There are two approaches that one can take to resolve this issue. Levison &
Duncan (2000) propose a solution in which entails smoothly moving terms from
the jump term to the Kepler term upon a close encounter with the central body.
Explicitly, their map is obtained by splitting (2.7), for use in map (2.10), in the
following way,

_ P% B Gmlm]
2o O<i<j Qij
. N——— e
Ho H,
1 2
+ — P;| 1-F
2my [;‘ ] ( Q@ (2.12)
H
P? G 1 ’
i Mom; _
+Z(2mi_ 0 )+2m0 [ZR] F(Q).
>0 i#0
Hyx

Compared to the classic Wisdom—Holman map the center of mass and interaction
terms do not change. The jump and Kepler terms are modulated by F, again a
mathematically smooth function taking values € [0, 1] of all particles” heliocentric
distances, with F = 1 very close to the central body and F = 0 very far from it.

4In Jacobi coordinates, Wisdom—Holman can integrate arbitrarily eccentric orbits as long as the
interaction term is 0. For more discussion see (Duncan et al., 1998)
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Hernandez & Dehnen (2023) expand on this method by using a discrete binary
switching function for F. Again, note that the Wisdom—Holman map is recovered
in the case of F = 0. Note also that F(Q) is a function of all particles’ pericenter
distance, in contrast to K(Q;;) in MERCURY/MERCURIUS. This is because when any
particle undergoes a pericenter passage, the jump term must be shifted to the
Kepler term. As the jump term is a function of all P; in the system, this means the
Kepler term of the particle is now coupled to every other particle in the system
— see Equation (2.22) — and cannot be independently integrated. Since we only
need to integrate Hy with the conventional integrator and stay within the DHC
coordinate system, we denote this as the PARTIAL PERI approach.

We have found in our testing (see Section 2.5) that this solution, although not
failing, achieves less than desirable results for some cases such as massive bodies
on very eccentric orbits due to numerical instabilities. Therefore, we present
and find good success with an alternative approach. In this approach, when a
close approach with the central star is detected we abandon DHC coordinates
entirely and perform our integration in the inertial frame. Explicitly, if F(Q) = 0
we integrate the standard Wisdom-Holman map in DHC coordinates, Equation
(2.9). If F(Q) = 1, we convert our system back to the inertial frame and integrate
Equation (2.1) with a conventional integrator. This approach completely sidesteps
all issues with the DHC splitting for close pericenter approaches. We will show
below that this approach is slightly slower than the Levison & Duncan (2000) and
Hernandez & Dehnen (2023) method, since we are now including all interaction
terms in the more complex H, but well worth the trade off in accuracy. Since we
are completely switching integration schemes, we denote this as the FULL PERI
approach.

2.3.3 The TRACE Maps

We combine the above concepts from Chambers (1999), Levison & Duncan (2000),
Hernandez & Dehnen (2023) as well as our new FULL PERI switching criteria to
derive the TRACE map. TRACE can work in two regimes depending on the state of
the system: in DHC coordinates, and in inertial Cartesian coordinates (hereafter,
simply referred to as "inertial"). The evolution in each of these regimes is described
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by the following splittings of (2.7), for use in map (2.10), respectively:

G
Z = m] (Kifit,z]

2
P? 1
H = 0 + — Pz'
thot 21’110 (; ]

O<i<j
~——
& " e (2.13)
P} Gmem; 1
l Z ij Pi ’
" Z (Zml ) Z 2”10 Z ¢ b
>0 O<i<j i#0

and,

H = Z T GY lmm] (2.14)

0<i<j

Hy

where Hy = H; = H; = 0. Here K and C are the splitting functions for planet-
planet and planet-star encounters, respectively. There is a major difference in
writing Eq. (2.13) compared with Egs. (2.11) and (2.12): the functions C and
Kij are no longer smooth functions of the phase space, but are instead modified
Heaviside functions, in which their value is allowed to be 0 and 1 only and updated
immediately before a timestep only: we have denoted the Heaviside functions with
C N and %K;; . t, indicates the nth discrete time sampled by the integrator, or the
simulation time immediately pre-timestep. To reduce clutter, we will drop the ¢,
superscript for the remainder of the paper with the understanding that all K;; and
C are evaluated only at t = ¢,,.

Hernandez & Dehnen (2023) demonstrated that velocity-dependent switching
functions are viable for such time-reversible, but not symplectic codes, and in
this work we show that these switching functions can actually depend on higher
derivatives of position. Hence, we will add a dependence on QM to show that
arbitrary derivatives of Q may be accounted for in both switching functions. In
this section, for brevity we will use the shorthands K (Qf;“)) =K;jand C (Q(")) =C
Kij = 1 if there is a planet-planet close encounter between planets i and j, and
7(1‘]' = 0 otherwise. Similarly, C = 1 if there is any close encounter with the central
body, and C = 0 otherwise.

We work in DHC coordinates whenever there is no close encounter with the
central body C = 0, or if the PARTIAL PERI prescription is used. We only work in
the inertial frame if there is both a close pericenter approach (C = 1) and we are
using the FULL PERI prescription.
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Note that our splitting functions are discrete rather than smooth. Discrete
switching functions were analyzed in Hernandez (2019), and found to generally
perform inaccurately in the long term when compared to continuous, smooth
switching functions (as seen in MERCURIUS and SyMBA). However, we will see that
with the reversible switching scheme of Hernandez & Dehnen (2023) that we have
implemented, the discrete switching function has comparable error performance
to the continuous case, in contrast to the results of Hernandez (2019). This allows
us to leverage the conceptually simpler discrete switching function. We describe
our switching algorithm in depth in the following section.

We may use Hamilton’s equations to derive the equations of motion associated
with the components H,, Hj, H;, Hx that make up H. For the CoM step,

- 2.15
Q=5 215)
Vo =0. (2.16)
For the jump step,
. OdH; 1
Q= 9P, " my (;‘ Pk] [1-C], (2.17)
. 1 oH,
i=———=——=0. 2.1
\% 90, 0 (2.18)
For the interaction step,
Q, =0, (2.19)
. m;
V.= -G Z EQZ.]. [1-%;]. (2.20)
j#i,j#0 if
And finally for the Kepler step H,
Q = L [Z P |C+V, (2.21)
oo
. Gm;
y, = _Gmog Mo % (2.22)
o it Q3 i
i j#i 20\ =ij

Here V; = P;/m; are the heliocentric velocities. For C = Y(i, j))K;; = 0, all compo-
nents of H admit analytic solutions. Hy is the only nontrivial equation of motion,
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and is solved with the fast Kepler solver used by WHFAST. In the case of C = 1
or K = 1, Hx becomes non-integrable and is solved with the BS implementation
in REBOUND, which was first implemented in Lu et al. (2023). Inthe 0 < C < 1
and 0 < K < 1 regimes H; and H; also become non-integrable, respectively. The
discrete switching function completely avoids this regime — in this scheme only
Hy will be non-integrable and computationally expensive to solve. The equations
of motion associated with Hinertial are significantly more complex, and are always
expensive to solve. We always require the use of a conventional integrator such
as BS or IAS15 to solve the equations in the inertial frame.

24 The TRACE Code

24.1 Switching Scheme

As previously mentioned, the computational benefits of the discrete switching
function typically come with the trade-off of poor error performance. The time-
reversible algorithm presented by Hernandez & Dehnen (2023) sidesteps this issue
by changing integrators reversibly upon a close encounter, and achieves better
error performance with reduced computational cost and conceptual simplicity. In
this section we provide a brief summary of the algorithm, and describe our specific
switching functions.

Figure 2.1 schematically walks through the switching algorithm. Let us define
each of these terms for the TRACE map specifically:

e M is the map used when there is no pericenter approach. In other words,
C = 0, but we may have some pairs of K;; = 1. Explicitly, this map is obtained
by splitting (2.7), for use in map (2.10), in the following way:

i#0 0<i<j gl
——
Ho 7’1 H (2.23)
N Z Plz GWIomz Z Gm; m]
>0 Zm, 0<i Q’]
1> l<]

Hy

The jump step is applied to all particles, while the interaction step is applied
to particle pairs for which %Ki; = 0. For particles i that are not undergoing
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First timestep Next timestep
Inertial to DHC Output to user
Reset Simulation s e o il C=1

c=0 Close pericenter FULL PERI
approach occurs
PARTIAL PERI
M, M, \. DHC to Inertial /
[ |
Any New Close Encounter - l
Post-Timestep Check M3

No New Close Encounter ¥
DHC to Inertial

Figure 2.1. Flowchart of the TRACE algorithm. Grey trapezoids correspond to shifting ref-
erence frames. Yellow hexagons correspond to checking the planet-planet and pericenter
close encounter conditions. The red diamond corresponds to step rejections that result in
resetting the simulation to the pre-timestep conditions. The green diamond represents a
step acceptance. Blue rectangles correspond to advancements of the simulation with the
various maps My, Mz, M3. A New Close Encounter is defined as either any %;; or C; which
was previously evaluated as 0 now evaluated as 1.

any planet-planet close encounters (K;; = 0 for all j) the Kepler step is solved
with the WHFAST Kepler solver. Otherwise, BS is used.

e M, is the map used when there is a close pericenter approach (C = 1), and
we are using the PARTIAL PERI prescription. Explicitly, this map is obtained
by splitting (2.7), for use in map (2.10), in the following way,

Gm; m] % ]

thot O<i<j Q1] !
7'{0 7'[1
2o G, ) 2 (2.24)
i Mont; .. ,
’ Z (Zmz ) Z Qij l] 2my [Z PZJ .
>0 0<i<j / i#0
Hy

H; = 0, while the interaction step is applied to particle pairs for which %; = 0
as previously. The Kepler step for all particles is integrated using BS.
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e Mj is the map used when there is a close pericenter approach (C = 1), and
we are using the FULL PERI prescription. Explicitly:

p? mim;
H = — -G . 2.25
Z 2m; Z |ql — q]| ( )

0<i<j

Hx
The DHC coordinates are abandoned here, and we simply integrate as in eq.
(2.14). TRACE offers two options for this map: BS and IAS15. To differentiate
these two options we denote them FULL BS and FULL IAS15.

We will now describe the switching algorithm in detail. By default, TRACE uses the
FULL BS pericenter prescription.

1. The system is first converted from inertial coordinates to DHC. Note that all
the coordinate conversions occur "under the hood" - the user inputs coor-
dinates in the inertial frame, and will always receive output in the inertial
frame as well.

2. At the beginning of each timestep, we evaluate C and all X;;.

(a) If C = 0, this means no particles are currently undergoing pericenter
passage. We use M;.

(b) If C =1, there is a particle undergoing a pericenter passage.

i. If PARTIAL PERI is being used, use map M.

ii. If FULL PERIisbeing used, first convert back to inertial coordinates,
then use map M;. We are not performing any splitting here, so there
is no need to do a post-timestep check. We always accept the step.

3. After executing M; or M,, the conditions C and K;; are re-evaluated for each
particle.

(a) If no particle pair that initially has %i; = 0 becomes Ki; = 1, and C does
not go from 0 to 1, this means no close encounters of any sort have been
introduced in the new step. We accept this step. Note that we do not
concern ourselves with a particle pair with K;; = 1 initially going to
K:j = 0 or C going from 1 to 0, as this corresponds to a particle leaving
the close encounter regime.
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(b) Otherwise, a particle has entered a close encounter of some sort in the
previous step. We reject the step, reset the simulation and perform
a new step where the pre-encounter step now takes into account the
updated K;;’s and C. The logic for the operators in this new step follow
the first bullet point, accounting for the new values of K;; and C in this
new step.

4. If needed (in the case of M; or M, being accepted), we convert from DHC to
Inertial coordinates.

Note that for a step with the efficient map M; to be accepted, it must satisfy K;; = 0
and C = 0 both before and after the step. This ensures the time-reversibility of our
algorithm - integrating in either time direction will result in the same switching
between maps. In practice, very few steps will need to be rejected, typically of
order a few percent or less. But as we will see in the following section, the rejection
of these few spurious steps results in very good long-term error performance, and
the fact that so few steps need to be redone is a worthwhile trade-off.

We note that this algorithm is only almost perfectly time reversible. This is due
to inconsistent or ambiguous cases that our algorithm cannot detect. For more
discussion on this topic, see Hernandez & Dehnen (2023). We also note that even
if the algorithm itself were to be perfectly time-reversible, floating-point precision
and secular drift from Bulirsch-Stoer also render the algorithm not exactly time-
reversible.

2.4.2 Switching Functions

In this section we describe the switching functions K (QSC)) and C (Q(")). In princi-
ple any user-defined switching function that does not depend on the sign of time
(for instance, a dependence on V" with odd 1) may be used - we will focus on the
two switching functions used in our tests that are responsible for our algorithm’s
computational efficiency and are included in TRACE by default.

Planet-Planet Close Encounter Condition

The default switching condition is designed to detect close encounters at the begin-
ning, end and during a timestep in a time-reversible way, making use only of the
positions and momenta available at each time step. Our algorithm approximates
particle motion mid-timestep as straight line motion, so some close encounters
may be missed — however, we have found it to be effective in the vast majority of
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cases. Explicitly, the switching function which detects a close encounter between
particles i and j, K;; (QS;.C)), can be written:

«(Q(x)) — 1 for Qmin < aHRcrit

i (2.26)

0 otherwise.

On the right-hand side, ay is a constant that may be set by the user (az = 3 by
default) and R is the maximum of a modified Hill radius criteria between the
two bodies,

Rait = max (Qi\3/mi/3m0, Q]-f/m]-/Bmo), (2.27)

which is the Hill radius where heliocentric distance replaces the traditional semi-
major axis. The logic behind using the modified Hill radius condition is due to
unbound particles: the Hill radius only has meaning for Keplerian orbits, and thus
will not appropriately flag a close encounter between a pair of unbound planets.
While less physically meaningful than the Hill radius, our criterion achieves good
results across the board, and is much better for systems where particles become
unbound, and the traditional Hill radius definition fails.

Omin represents the minimum distance between particles over the range t €
[tn - %, t, + %] We use a similar first-order estimate in time to the one described
in Hernandez & Dehnen (2024)°, section 3.1.1, to calculate Qnin. To ensure time-
reversibility, we must check in the two time directions by switching the sign of
velocity. The minimum will occur in the d time direction, whered = £1,and d = 1
is forwards time and d = -1 is backwards time. d satisfies d(Q,; - Vij) < 0. In the
rare case Qij - Vi;i = 0, Qmin is given at present, with Qnin = Q;;. Otherwise, Qmin
occurs att = t,, + dtmin, With tpin = —d(Ql-]- -Vip/ V?]. (so that t,,;, > 0). Then we have,

\/Qiz]. —(Qy- Vi V? for ki < h/2, and

Qmin =
\/Qf]. +hd(Qy+ Vi) + I2VZ /4 for by 2 h/2.

This is a similar switching function to the one used in MERCURIUS. There are four
key differences: first, our switching function is discrete, while the MERCURIUS
switching function is smooth. Secondly, MERCURIUS uses the standard Hill ra-
dius definition while ours is modified. Third, MERCURIUS includes a more robust
encounter prediction algorithm. In the MERCURIUS algorithm the particles are as-

SHernandez & Dehnen (2024) have a typo in their section 3.1.1. Rather than rmin =
\/qz +2hip - q + p* + 13, it should read rmin = \/q2 +2hip - q + p?h.
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sumed to undergo Keplerian trajectories, rather than the straight lines used in
TRACE. Due to the structure of the MERCURIUS integrator, it is feasible to perform
a Kepler step "for free" computationally, but this is impossible for TRACE, so we
resort to more simplified trajectories. This is the only advantage MERCURIUS has
over TRACE. Finally, MERCURIUS calculates the switching radius at the beginning
of the integration for each pair of particles, which them remains fixed for the du-
ration of the simulation. This is necessary to maintain the symplectic nature of
MERCURIUS, but has the unfortunate side result of the switching radius becoming
less physically meaningful if the planet’s semimajor axis changes over the course
of the integration. However, changing the switching function does not impact
reversibility, so this is not an issue for TRACE. To our knowledge, this is the first
switching function for a hybrid integrator which can depend on the current state
of the system, a novel result which greatly improves the flexibility of TRACE.

Pericenter Condition

The recent work of Pham et al. (2024) introduced a new adaptive timestep criterion
for the IAS15 integrator. We use their result to inform our default choice of the
pericenter switching. We first define,

where QZ@ is the magnitude of the jth derivative of heliocentric position of the
ith particle. These higher order derivatives are approximated using a finite dif-
ferencing method, the details of which are enumerated in Everhart (1985); Rein &
Spiegel (2015). The necessity of calculating the higher-order derivatives does intro-
duce some additional computational overhead, but this is not too significant and
we judged that the robustness of this condition justifies this additional overhead.

(2.29)

TPRS,i =

Then, our switching condition is given,

1forh>n- miln (Tprs,i)
>

c(Qw) = (2.30)

0 otherwise.
Where we have found that 7 = 1 gives good results in our testing, and is hence set
as the default value. Note that this condition is a minimum over all non-central
bodies in the system. Thus if any body is flagged for pericenter approach, the
entire simulation will be integrated with BS or IAS15.
A note about our switching criteria follows. TRACE is a second order method.
Defining the exact trajectory as z(t), the TRACE trajectory as Z(t), and the initial
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conditions z(0), TRACE’s local error is,
z,(h) = z(h) + O(h®). (2.31)

The switching functions in this section can only be considered approximately
physical due to this fact. By contrast, the orbit for a higher order method (like
IAS15) is,

z,(h) = z(h) + O(W"*™), (2.32)

with n a larger integer like 15. For such higher order methods, the switching
functions are more physical, representing time and length scales mimicking the
orbits more closely. Regardless, our switching criteria work well in all tested
problems.

These are the default pericenter switching conditions used in TRACE, but we
have implemented a few others as well. See Appendix 2.9 for details on these
alternatives.

2.4.3 Collisions

Collisions and mergers constitute irreversible steps. Thus TRACE cannot possibly
be time reversible when collisions occur. TRACE handles collisions by enforcing a
step acceptance: if a collision is detected mid-timestep, the step is automatically
accepted regardless of either switching condition. TRACE is compatible with the
standard REBOUND collision modules.

2.4.4 Additional Forces

In many astrophysical systems it may be advantageous to consider extra dissipa-
tive forces which cannot be modelled through pure N-body gravitational interac-
tions such as tides or radiation forces. It is very easy to add these additional forces
to REBOUND using REBOUNDx (Tamayo et al., 2020a), a library of additional physics
that can be added to a REBOUND simulation.

We briefly comment on the efficacy of using a time-reversible integrator such
as TRACE for the dynamics of the system if non-reversible forces are implemented.
First, the extra forces do not necessarily need to be Hamiltonian — we can in-
sert additional operators symmetrically in Equation (2.10). These extra forces,
as long as they are relatively small, do not compromise the long-term accuracy
of a symplectic method as shown in Tamayo et al. (2020a). Similarly, Hairer
et al. (2006) show that time-reversible methods are not compromised by small
non-Hamiltonian perturbations.
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2.5 Performance Tests

In this section, we apply TRACE to a number of realistic astrophysical systems
and compare its performance against other integrators available in REBOUND®. All
the tests are performed using their C implementations. In all of our comparisons
with IAS15, we use the new adaptive timestep criterion described by Pham et al.
(2024). Unless otherwise specified, TRACE uses the FULL BS pericenter approach
prescription for all our tests in this section.

2.5.1 Chaotic Exchange Orbit

We first investigate the case of a chaotic exchange orbit in the restricted coplanar
three-body problem. The particular problem we have chosen includes a Sun-like
star, a Jupiter-like planet on a circular orbit at its present-day semimajor axis, and a
zeromass test particle. It hasbeen studied in depth by anumber of works including
Wisdom (2017), Dehnen & Hernandez (2017), Hernandez (2019) and Hernandez &
Dehnen (2023). In the circular restricted three-body problem, the only conserved
quantity is the Jacobi constant C; (Murray & Dermott, 2000; Tremaine, 2023). For
the initial value of C; we have selected in our tests, the test particle’s orbit is
exchanged between the primary and the secondary, undergoing multiple close
encounters with the secondary. It can also never escape the system, making this
problem an excellent test of body-body close encounters. Figure 2.2 shows the
results of our test. We integrate the system for 5000 orbits of the secondary, using
a timestep of h = 8 days. We use a hill radius switching criteria of ayy = 4.84".
Once every 10 years, the Jacobi constant error is calculated. We compare TRACE to
MERCURIUS and WHFast. As expected, WHFAST fails to resolve the close encounters
with the secondary at all, and the error is immediately catastrophic. MERCURIUS
and TRACE are both able to resolve the close encounters, and both display very
good error performance over the entire integration with no secular drift. The
performance of both integrators are comparable, staying well below 1 percent
for the duration of the simulation. Comparing the runtimes of the two hybrid
integrators: TRACE took 3.26 seconds while MERCURIUS took 39.7 seconds, a 12x
speedup.

®https://github.com/hannorein/rebound
"This value is selected for a direct comparison with MERCURIUS, which includes a hidden factor
of 1.21 in the source code.
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Figure 2.2. A comparison between TRACE, MERCURIUS and WHFAST for the chaotic exchange
problem. With a timestep of h = 8 days, the system is integrated for 5000 orbits of
the primary with Jacobi constant error recorded every 100 years. WHFAST immediately
fails, while TRACE and MERCURIUS both show comparable good error performance with no
secular drift. TRACE represents a 9.4x speedup over MERCURIUS for this problem. The mean
error for TRACE and MERCURIUS are 5.72 X 107 and 3.01 x 107, respectively.

2.5.2 Highly Eccentric Orbits

To evaluate TRACE’s capabilities in resolving close encounters with the central
body, we consider a two-planet system consisting of the Sun, Jupiter and Saturn.
However, here Saturn’s eccentricity is set to a various extremely high values,
while its inclination is set to 71/2 with respect to the orbit of Jupiter. With this
setup, Saturn never has a close encounter with Jupiter, but does approach very
close to the Sun.

This problem was first introduced in Levison & Duncan (2000) and revisited by
Wisdom (2017); Hernandez & Dehnen (2023). We present the results of a number
of tests we have performed on this system. First, we set e = 0.99 for Saturn and
integrated the system for 300 Saturn orbits, using a timestep of & = 0.15 years.
This is approximately 1/80th the period of Jupiter, the shortest orbital period of
the system, so naively one might expect this to be an appropriate timestep for
the Wisdom-Holman map. However, of course in reality this is not the case,
as pericenter is not resolved. In the first panel of Figure 2.3, we compare the
performance of WHFAST, MERCURIUS, BS and TRACE. The absolute value of the relative
energy error, defined as (E—Einit)/ Einit, is output at the end of every timestep. We see
that once again WHFAST immediately fails catastrophically, while MERCURIUS also
fails to resolve the close encounters with the host star and the energy error rapidly
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exceeds 107", TRACE keeps the energy error well under 10~ for the entire duration
of the simulation, with no appreciable secular drift. BS does better than any of the
splitting schemes, but secular drift is visible, which is expected of non—-symplectic
or non-reversible schemes. We also test WHHFAST with a smaller timesteps which
resolves the pericenter, to show that in principle it is possible to achieve similar
results with the pure Wisdom—-Holman map. The timestep necessary to resolve
the pericenter for an eccentric orbit is related to the "effective period at pericenter”
(Wisdom, 2015; Hernandez et al., 2022),

[1—e)p a
=2 ——— 2.33
tf & 1+e Gmy ( )

where g, ¢ are the eccentricity and semimajor axis of the orbit. We test WHFAST
with a timestep of 7,/50. This timestep is chosen to achieve a close match with
TRACE’s performance. We refer to this tests as WHFAST Resolved. We see that it
is possible to reach similar levels of energy error with TRACE with pure Wisdom-
Holman. However, we can see from the bottom panel of Figure 2.3 that there are
vast computational costs to picking such a small timestep, and that TRACE achieves
similar error performance much faster.

In the second panel of Figure 2.3, we perform similar simulations, but we
now set the initial eccentricity of Saturn to various values up to 0.9999. These
values were selected for comparison with Figure 1 of Levison & Duncan (2000)
and Figure 8 of Hernandez & Dehnen (2023). For each simulation, we plot the
maximum energy error reached over the entire runtime. WHFAST and MERCURIUS
perform similarly, with at least 107! energy error in all cases and reaching errors
significantly greater than unity for the highly eccentric systems. TRACE again
keeps the error around 1073, and in fact shows consistent performance across all
eccentricities. We see that even with much smaller timesteps WHFAST Resolved
still performs badly at high eccentricities, while also having significantly slower
compute time. The power of the pericenter switching condition allows TRACE to
resolve extremely eccentric orbits with far more reasonable timesteps.

2.5.3 Violent Systems

We envision violent systems to be one of the most relevant and powerful appli-
cations of TRACE. A violent system is one which undergoes significant dynamical
instability, triggered by close encounters between planets. This can result in
planets being ejected from the system, or being scattered onto orbits with high
eccentricity and/or inclination. Planet-planet scattering almost certainly plays a
role in sculpting the demographics of exoplanetary systems (Nagasawa & Ida,
2011). Such systems are obvious applications for hybrid integrators, as for the vast
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Figure 2.3. A comparison of TRACE, MERCURIUS, BS and WHFAST for a Sun-Jupiter-Saturn
system where Saturn has been given a high eccentricity. The first subplot shows the
absolute value in the energy error over 300 orbits of Saturn, for a case where e = 0.99.
MERCURIUS and WHFAST are both unable to resolve the close encounter with the Sun and
the error quickly reaches or exceeds unity. TRACE keeps the error less than 10~% with no
secular drift. WHFAST Resolved, which are simply WHFAST with much smaller timesteps,
is also plotted in dotted lines. It achieves similar error performance to TRACE, but requires
significantly more time. The middle subplot compares the maximum error of six such
systems with varying eccentricity for Saturn, plotted as a function of initial perihelion
distance (the orbit slightly evolves over the course of the simulations). All MERCURIUS and
WHFAST simulations perform worse as the eccentricity increases, while TRACE is consistently
better. The bottom plot shows the same data points as the middle subplot, but now
plotted on an efficiency cost vs. maximum energy error plot. We see that while WHFAST
Resolved can in principle keep up with TRACE in error performance for relatively low
eccentricities, this comes at a vast computation cost. TRACE performs comparably to BS
from a computation cost standpoint.
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majority of the simulation the planets are well separated and Wisdom—-Holman
is sufficient to accurately integrate the system. While close encounters in these
systems represent a relatively small fraction of the total runtime, it is crucial to
handle them with a conventional integrator to avoid catastrophic error. MERCURIUS
is ineffective for many violent systems. While it can handle planet-planet close
encounters well in most cases planets will be scattered onto highly eccentric orbits
which leads to the pericenter approach not being resolved. In this section we will
show that TRACE can handle these systems both quickly and accurately.

Let us consider a system of three Jupiter-mass planets orbiting a Sun-like star.
Chambers et al. (1996) showed that such a system will essentially always exhibit
dynamical instability if their initial separations are less than 10 mutual Hill radii. To
induce rapid dynamical instability in our system, we place the first planetata; =5
au and space the other two 3 mutual Hill radii out from the planet immediately
interior. The eccentricity of each planet is set to 0.05, and the inclinations are set
to 1°,2°,3° from the inner to outer planet. All other orbital angles are set to 0.
We remove any particles which pass beyond 10* au of the central star, using the
exit_max_distance condition in REBOUND. Each time a particle is removed from
the simulation, we reset to the center of mass frame of the system to avoid CoM
and particle drift (which, left unchecked, would trigger the exit condition for all
particles). We account for the lost energy associated with removing a particle from
the system and the transformation back to the the new center of mass by using
REBOUND’s built in track_energy_offset feature. We consider collisions as well,
using the built-in REBOUND collision modules REB_COLLISION_DIRECT for collision
detection and reb_collision_resolve_merge for collision resolution. Collisions
are flagged when any pair of particles overlap radii, and are resolved by merging
the two colliding particles into one (conserving mass, momentum, and volume,
but not energy).

This is a highly chaotic system, so comparing the performance of integrators for
a single system is essentially meaningless - the slight numerical differences ensure
that we are very quickly working with entirely different systems. Instead, we take
a statistical approach by considering an ensemble of such systems. The setup of
our analysis is as follows. We have run 500 instances of the system as described
above, but have displaced the x-coordinate of the outermost planet by a random
amount between —107'? and 1072 au. We run each of these 500 instances with the
following integrators: TRACE, MERCURIUS, BS, and IAS15. Each system is integrated
forward in time for 107 years (which is roughly 9x10° initial orbits of the innermost
planet). For TRACE and MERCURIUS we set the initial timestep equal to 0.221 years.
We arrive at this value from a conservation of energy argument. The smallest
possible dynamical timescale at the end of this problem is the scenario where one
planet is left on a close-in orbit and the other two are completely ejected. We
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calculate the orbital period of this close-in orbit and set our timestep to 1/15th of
this value. TAS15 and BS are adaptive-timestep integrators - their initial timesteps
are taken to be 27t X 1072 years.

Figure 2.4 shows the statistical results from our ensemble. The upper subplot
displays the number planets in the system that survive over the course of the
107 year integration. The distributions of TRACE, BS and IAS15 match each other
very well, with the vast majority of systems ejecting one planet and retaining two.
MERCURIUS, on the other hand, differs significantly in these statistics, with a more
even split between one- and two- planet systems. The middle subplot displays
the distribution of energy error at the end of the simulations of TRACE, BS and
MERCURIUS. As expected IAS15 performs very well, with a distribution centered
around 107!, and as such is omitted from the plot for clarity. MERCURIUS, also as
expected, performs very poorly, with a median error very close to unity. Pure BS
in general performs better than either hybrid integrator, with a median error of
approximately 10~*. TRACE represents a significant improvement over MERCURIUS,
with a median error of 107 compared to 107%*. The largest TRACE error is
10728, and the largest MERCURIUS error is 10%4. In the bottom subplot, we show
histograms of the total runtime of simulations. For clarity, we only show the lower
end of the IAS15 results - this distribution is centered on 26 minutes. The TRACE
has a significant speed advantage over both BS and IAS15. This advantage grows
the more particles are added to the system, as can be seen in the next section.

Of particular interest to those seeking to use TRACE on large ensembles of chaotic
systems is the question of how well TRACE is able to reproduce the demographics
of orbital elements on a statistical level. We investigate this in Figure 2.5. For
this phase we consider only our simulations where two planets survive, as the
other three cases do not have sufficient representation to perform robust statistical
analysis on. We have plotted the cumulative distributions of eccentricity and
inclination for the inner (P1) and outer (P2) planets for all simulations in which
two planets survive, for each integrator. By eye, TRACE, BS and IAS15 appear quite
similar.

In summary, TRACE reproduces the results of IAS15 quite well on a statistical
level, with an almost 20x speedup. This is in stark contrast to MERCURIUS, which
qualitatively fails to reproduce the IAS15 statistics. In the preparation of this
manuscript, Lu et al. (2024a) used TRACE for a similar ensemble of violent scattering
systems, with excellent error performance as well.

2.5.4 Accretion of the Moon

As a test of TRACE's ability to integrate systems with a very large number of
particles, we study the accretion of the moon from an impact disk generated by
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Figure 2.4. Statistics on an ensemble of 500 three-body scattering simulations, comparing
the performance of TRACE, MERCURIUS, IAS15 and BS. The top subplot shows the final
number of planets surviving at the end of the 107 year integration. MERCURIUS is the
obvious outlier, while TRACE replicates the statistics of IAS15 best. Poisson error bars are
shown. The middle subplot shows histograms of the final energy errors, as well as the
median values. IAS15 is not shown for clarity, but its distribution is centered around
1071, TRACE represents a significant improvement over MERCURIUS, with the largest TRACE
error being 10728, The bottom subplot shows histograms of the runtimes. MERCURIUS is
very fast due to the number of systems that eject too many planets. TRACE and BS both
significantly improve on the IAS15 runtime, with TRACE having a small advantage over BS.
The median runtimes of TRACE and BS are plotted in dotted lines. TRACE has a 1.67x speed
advantage over BS and a 15.56x speed advantage over IAS15. Since MERCURIUS performs
very poorly in this system we elect not to display its runtime on the bottom subplot to
reduce clutter — it is very fast, but due to poor error performance should not be used for
such systems.

39



[ TRACE [ BS
[ 1AS15 [ MERCURIUS

400 A
300 A
200 A
100 A

400 A
300 A
200 A
100 ~

P2 CDF (# Simulations) P1 CDF (# Simulations)
o

0 T T T T
0 50 10®@ 50 100

Eccentricity Inclination ( °)

Figure 2.5. Cumulative distribution functions for the two-planet systems with all four
integrators. The top row are the distributions for the inner planet, and the bottom row the
distributions for the outer planet. We plot eccentricities in the left column and inclinations
in the right. TRACE, BS, and IAS15 show very similar distributions, while it is clear that
MERCURIUS underpredicts two-planet systems.

a giant impact via direct N-body simulations. This problem has been studied by
Ida et al. (1997); Duncan et al. (1998); Kokubo et al. (2000) among others.

We present results from a simulation in the spirit of these studies. While our
exact initial conditions do not match these studies, the final results are not sensitive
to the precise initial conditions. Our simulation includes 10° disk particles around
an Earth-mass planet. The units of this simulation are the same as the study of
Duncan et al. (1998): mass in Earth masses, Roche radius, and G = 1 (so a particle
exactly at Earth’s Roche radius has an orbital period of 27). The initial masses are
randomly drawn from a power law distribution o« m~! between m = 3.2 x 1077 and
m = 3.2x107*. The total initial mass of the disk in our simulation is approximately
four lunar masses. As in Kokubo et al. (2000), the density of the disk particles is
pp = 3.3gcm 3, while the density of the Earth is taken as pg = 5.5 gcm™. Therefore,
the radius of each disk particle is given by r = (m/Mg)*(p,/pe)*Re. In these
units, Rg = 1/2.9. The semimajor axes of the disk particles are drawn from a power
law distribution « a~! between a = Rr and a = 1.5. The eccentricities, inclinations,
and other orbital angles (Q, w, f) are drawn from uniform distributions between
{0,0.95}, {0°,50°} and {0°, 360°}, respectively. Unlike Duncan et al. (1998), we do not
remove initially Earth-crossing orbits as our method can handle highly eccentric
orbits well.
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We first do not consider collisions, and simply integrate the system with TRACE,
MERCURIUS, IAS15, and BS for 67t time units. In this particular system while disk
particles do get very eccentric, they have such low mass that error associated
with a large jump term may not be significant. We thus also investigate the
performance of TRACE using three prescriptions: the default FULL BS pericenter
prescription, PARTIAL PERI, as well as completely turning off pericenter switching.
The results are plotted in Figure 2.6 on an efficiency diagram. We see that TRACE,
BS and IAS15 all have very good error performance and high compute times. The
poor computational performance of TRACE makes sense in this context: with so
many particles we approach the limit of there being a pericenter close encounter
every timestep - so TRACE essentially becomes BS with more overhead in this case.
MERCURIUS is just as slow as the other three integrators, but performs worse due
to failing to resolve pericenter approaches. Note, however, that despite failing
to resolve pericenter approaches the error is still relatively good (around 107°),
as stated earlier. The reason for the slightly better performance of MERCURIUS
compared to the non-pericenter TRACE prescriptions is due to MERCURIUS having
a more robust encounter prediction routine, as described in Section 2.4. TRACE
with no pericenter switching detected 77299 close encounters, while MERCURIUS
detected 137520. TRACE Partial and TRACE with no pericenter switching achieve
similar accuracy to MERCURIUS, but significantly faster. TRACE Partial has a 6.2x
speed advantage over MERCURIUS, and a TRACE with no pericenter switching at all
has a41.1x advantage. We conclude that for large N systems where the particles are
relatively small, TRACE with full pericenter switching offers no advantage over BS or
IAS15. Butif we relax pericenter switching requirements, TRACE offers comparable
(relatively good) error performance to MERCURIUS with a vastly improved runtime.

We now perform the same simulation, but integrate 10° time units and turn
collisions on with the same prescription as Section 2.5.3. Figure 2.7 shows the
results of our simulation using TRACE Partial. The left hand subplot shows
the number of particles in the simulation as a function of time. While a direct
comparison should not be made with the results of Ida et al. (1997) and Duncan
et al. (1998) due to the slightly different initial conditions, qualitatively all four
integrators match their results (and each other) well — see Figure 9 in Duncan
et al. (1998). The right hand plots show snapshots of our TRACE simulation (blue)
and IAS15 simulation (green) at the simulation’s start (shared between the two
simulations, plotted in black), 60 time units and at the end. The location of the
particles think is plotted in cylindrical coordinates (7, z) centered on Earth in units
of Roche radius. These may be compared to Figures 2 — 4 in Ida et al. (1997),
and again are qualitatively similar. Both final results for TRACE and IAS15 in the
bottom right panel shows one large body just within the Roche radii. This is
in good agreement with the results of Ida et al. (1997) and Kokubo et al. (2000).
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Figure 2.6. Efficiency plot of various integrators for the large-N accretion problem without
considering collisions. TRACE, BS and IAS15 all perform very well from an error standpoint,
but are quite slow. MERCURIUS is just as slow, but is far less accurate. TRACE Partial and
TRACE no Peri offer much fast alternatives while maintaining roughly the accuracy of
MERCURIUS.

The differences in our simulations can be attributed to differences in the initial
conditions and integration methodology. The runtimes for the simulations are 7.06,
46.87,90.13, and 65.98 seconds for TRACE, MERCURIUS, BS and IAS15, respectively.
TRACE improves on the runtime of MERCURIUS, BS and IAS15 by 6.60x, 12.80x and
9.30x, respectively.

We conclude that once again TRACE offers enormous computational benefits
while maintaining acceptable levels of accuracy for large N systems with collisions,
qualitatively reproducing the results of IAS15.

255 ZILK Cycles

The von Zeipel-Lidov-Kozai (ZLK) effect has been a well-studied phenomenon of
great interest and wide application since its discovery (von Zeipel, 1910; Lidov,
1962; Kozai, 1962; Naoz, 2016). In a hierarchical three-body system, a highly
inclined outer perturber can induce significant coupled eccentricity and inclination
oscillations in the orbit of the inner body. Similarly to Section 2.5.2 Wisdom-
Holman methods are in principle capable of accurately integrating the system.
However, a worst-case timestep that accurately resolves the pericenter passage
during high-eccentricity epochs must be applied over the length of the simulation,
meaning that in practice it is actually faster to use adaptive-timestep higher order
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Figure 2.7. Results from a lunar accretion problem involving 1000 particles, accounting
for collisions. We compare results from TRACE, MERCURIUS, IAS15 and BS. The left subplot
shows the total number of bodies in the simulation as a function of time. All three
integrators show good agreement. The right subplots show snapshots of the simulation at
t = 0,60 time units and the end of the simulation, for both TRACE (blue) and IAS15 (green).
The positions of the planetesimals are plotted in cylindrical coordinates, and the size of
each point in the graph corresponds to the planetesimal’s mass. The physical radius of
Earth is depicted in brown. We see that a roughly lunar-mass object (~0.9 lunar masses
in both simulations) forms at just within the Earth’s Roche limit. Note also that many
disk particles are initialized within the physical radius of Earth. In many previous works
these particles would need to be removed due to poor resolution of pericenter passage —
a significant advantage of TRACE is in the accurate handling of such particles.
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Figure 2.8. A comparison of IAS15 (green), TRACE (blue), and WHFAST in both Jacobi (gold)
and DH (gold dashed) coordinates for ZLK oscillations. The upper subplot shows eccen-
tricity evolution, and the bottom subplot depicts energy error over time. The eccentricity
evolution of TAS15 and WHFAST in Jacobi coordinates are identical at this scale — their
curves appear identical. WHFAST in Jacobi coordinates outperforms TRACE in both error
and computation performance. TRACE gives qualitatively different results than TAS15 and
WHFAST.

integrators such as IAS15. This would initially seem to be a good use case for
TRACE, but we will show in this section that other integrators perform better.

We first consider a prototypical system in which ZLK oscillations are expected
to occur. The initial values of our fiducial system are slightly modified from Figure
16 of Naoz (2016). In our test, we consider a Neptune-mass planet initially orbiting
a 0.32 Mg star with a; = 2 au and e; = 0.01. The perturber is a 10 M; brown dwarf
orbiting the primary with a, = 50 au, e, = 0.52 and i, = 80°. We integrate this
system with TAS15, WHFAST and TRACE. For TRACE, we use a timestep equal to 1/20
the initial orbital period of the planet. Figure 2.8 plots the eccentricity evolution
of the inner planet and the energy error over two ZLK cycles.

The runtimes for TRACE, WHFAST and IAS15 are 19.63,7.47, and 284.98 seconds,
respectively. We see that while TRACE maintains an acceptable level of error in this
problem, WHFAST actually outperforms it in both speed and computation time. The
reason for this has to do with the choice of splitting scheme and coordinates. By
default, WHFAST is implemented in Jacobi coordinates. This differs from DHC used
by TRACE in that Hx does exactly represent a Keplerian orbit. Hence, in Jacobi
coordinates Wisdom—Holman methods are able to accurately integrate arbitrarily
eccentric orbits without the need to choose an extremely small timestep to resolve
pericenter approach. We demonstrate this by also plotting an implementation of
WHFAST in DHC in dotted lines, with the same timestep. We see that this scheme
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fails at relatively low eccentricity, and the planet is quickly ejected from the system.

We emphasize that this is not exactly a failure case for TRACE, as it is working
as intended. Rather, this should be seen as a strength of the Wisdom—-Holman
method for the specific case of a highly eccentric innermost planet. We conclude
that for such systems, TRACE is unsuitable: if one desires extremely high accuracy
IAS15 should be used, and if moderate accuracy with high speed is required then
WHFAST outperforms TRACE and should be used instead.

2.6 Potential Improvements

In this section, we list two potential improvements to TRACE that are not currently
implemented.

2.6.1 Pairwise Reversibility

Currently, upon rejection of a timestep, TRACE will reset the entire simulation
to the initial state and re-integrate all particles. This is unavoidable for close
encounters with the central body, since the TRACE map entails moving the entire
H; to Hy, which would couple the equations of motions of all the particles and
necessitates solving them all with BS. However, this in principle can be avoided
for planet-planet close encounters, since moving H; to Hy is only a function of the
positions and velocities of the two bodies undergoing a close encounter. Hence
we should only need to redo the interaction steps for the non-close encounter
particles, without needing to recalculate the relatively expensive Kepler step.

In practice this is only a time save for step rejections, which for the majority
of simulations are a comparatively small fraction of the total steps taken in the
simulation, so the actual computational benefit is insignificant. We have hence
elected to not include pairwise reversibility in this iteration of TRACE.

2.6.2 Adaptive Timestepping

Hernandez & Dehnen (2023) showed that reversibly switching between timesteps
using the same switching scheme is feasible. Notably, Hernandez & Dehnen
(2024) were able to reversibly adapt the timestep of a SYMBA-like algorithm to
great effect. Their implementation used different timesteps for different "shells"
of increasing distance from the host star. The difficulty of a more flexible scheme
valid for a wider array of astrophysical systems precluded its inclusion into TRACE.
In principle, the global timestep of TRACE should be able to be adapted reversibly,
which would result in performance gains.
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2.7 Conclusion

We present TRACE, a time-reversible hybrid integrator capable of efficiently and
accurately resolving any type of close encounter in the planetary N-body prob-
lem. TRACE matches or improves upon the error performance of current hybrid
integrators such as MERCURIUS with a conceptually simpler switching scheme and
a significant speedup (up to 14x for certain problems). TRACE is freely available as
part of the REBOUND package at https://github.com/hannorein/rebound®. It is
available in both C and Python. From our testing, TRACE is superior to MERCURIUS
in all cases. We anticipate TRACE having a myriad of useful applications including
violent scattering systems, large N systems, and systems with highly eccentric
orbits.

While TRACE shows excellent performance, there are clear avenues of improve-
ment such as pairwise-reversibility and adapting the global timestep, both of
which could lead to significant speedups. The fact that TRACE is almost completely
reversible lends itself to significantly more flexibility than symplectic integrators
such as MERCURIUS, in particular with our choices of switching functions. We did
not deeply explore potential switching functions - rather, we aimed to select safe
defaults for the user. In principle, these switching functions could be any arbitrary
function of particle positions and velocities and further exploration may lead to
better results.

It is instructive to directly compare and discuss the advantages TRACE has over
MERCURIUS, the current hybrid integrator implemented in REBOUND. First, TRACE is
significantly faster than MERCURIUS in many cases. There is some minor benefit
from the simpler switching function. However, the vast majority of the speedup
comes from the use of BS for close encounters in the case of TRACE, instead of
IAS15 for MERCURIUS. While IAS15 indeed is significantly more accurate than BS,
for hybrid integrators the error is dominated by error associated with operator
splitting (see Section 2.2.1). This greatly overshadows the difference in error
between IAS15 and BS, so our choice of BS over IAS15 provides significant speed
benefits with negligible accuracy tradeoff. Secondly, TRACE is able to resolve close
encounters with the central body, unlike MERCURIUS which can only handle close
encounters between pairs of planets. This allows TRACE to effectively integrate
highly eccentric orbits which MERCURIUS fails at. Finally, ignoring finite floating
point precision, TRACE is exactly time-reversible while MERCURIUS is symplectic.
The almost time-reversible nature of TRACE means that it has good long-term error
conservation properties as we have shown in this work. The fact that TRACE

8Extensive documentation and example notebooks are available at
https://rebound.readthedocs.io
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is not symplectic affords it several flexibility advantages over MERCURIUS, which
is demonstrated most prominently in the switching function. To maintain the
symplectic nature of MERCURIUS, the switching distance is set at the beginning of the
simulation and cannot change. If the system significantly changes this criteria may
become unphysical - for instance, if a planet moves outward over the course of the
simulation close encounters will be underpredicted. TRACE does not face this issue,
and can adjust the switching criteria as a function of the state of the simulation
such that it always remains a physically meaningful quantity. This has the further
advantage that we can implement TRACE such that each timestep only depends
on the inertial particle coordinates, but not pre-calculated per-particle parameters
such as switching radii. This makes adding/removing/colliding/merging particles
during a simulation much easier. Given that TRACE performs strictly better than
MERCURIUS, the MERCURIUS integrator will be depreciated in the near future.

Finally, we discuss specific use cases for TRACE. We must emphasize that by
virtue of being a hybrid integrator TRACE has limited use cases. In the vast majority
of cases, REBOUND users are encouraged to use WHFAST for the planetary N-body
problem when there are no close encounters, or IAS15 for a wider variety of
problems where high accuracy is paramount. We recommend TRACE for cases
of the planetary N-body problem where close encounters do occur, be it with
the central star or between pairs of planets, and where only moderate accuracy
is required but fast computation is desired. For instance, in large ensembles
of chaotic systems exact accuracy in each individual system is not required to
recover macroscopic quantities on a statistical or population level - and very large
ensembles benefit greatly from the speedups afforded by TRACE.
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2.8 Appendix: Democratic Heliocentric Coordinates

TRACE uses the Democratic Heliocentric Coordinates introduced by Duncan et al.
(1998). These coordinates are also used by MERCURIUS, and are given by,

q,— 4 fori#0
Q=17 v . (2.34)
Mot Z]‘:o qu]. fori=0.
The corresponding conjegate momenta are given:
mi v N-1 .
e 2j=o pj fori#0
Pi — pl Mot Z]_O p] or (235)

Z?]:f)l P fori=0.

2.9 Appendix: Other Pericenter Switching Functions

In this Appendix we describe some alternative prescriptions for our pericenter
switching condition that are also included with TRACE.

Effective Period at Pericenter

Wisdom (2015) demonstrated that the Wisdom—Holman method is able to integrate
arbitrarily eccentric orbits, so long as the timestep chosen does not exceed 1/16th of
the effective period at pericenter, or 27t/ f |pericenter Where f is the true anomaly. We
use this result to informs another possible choice of pericenter switching condition:

pi=2"_an, (2.36)
f P
where Q |
. ; X 0;

fi= o (2.37)

ap is a constant that may be set by the user. Wisdom (2015) recommends a, = 17.
The full switching condition condition is given by

1 for minP; <0
c(Q) = >0 (2.38)

0 otherwise.

While powerful, this condition is incomplete - it is only meaningful for bound
Keplerian orbits. For unbound orbits, this condition does not trigger.
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Heliocentric Distance

The most simple prescription one can use is simple heliocentric distance from the
star, and can be written,

1 for min[Q; < ap] <0
i>0

c(Q¥) = (2.39)

0 otherwise.
The choice of ap is not intuitive, depends on the scale of the system, and may
require some experimentation. However, if a suitable value is found for a partic-
ular system, this condition offers the most easily understood pericenter switching
condition.

None

It is also possible to turn off pericenter switching as a whole, which may be
desirable for some problems. In this case, TRACE essentially becomes a faster
version of MERCURIUS.

210 Appendix: Symplecticity of TRACE

In this Appendix we demonstrate that although TRACE is composed of maps that
are both symplectic and reversible, switching between them renders TRACE itself
not exactly symplectic. Assume we have symplectic and reversible maps M; and
M, and we’d like to switch between them. z; is defined as the mapped phase space
and z is the initial state: z; = M;z. By definition of symplecticity, it follows that,

Q=J'Qy, (2.40)
where () is an antisymmetric matrix,

0 -1
Q—L 0], (2.41)

and J; is the Jacobian matrix, J; = dz;/dz for i = 1 and 2. Let’s switch according
to some binary scalar function F(z), taking values 0 or 1, in a way that is non-
reversible. We merely want to prove that switching between two symplectic maps
is not symplectic, without concern for reversibility. Denote a map that switches
between M; and M, as M;3:

z3 = M3z = (M1F(z) + My(1 — F(2))) z, (2.42)
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Note that this map behaves differently from the algorithm behind the TRACE code;
in the code’s case, F is set before and after a global timestep (a modified Heaviside
function), but here F can vary within a step. We return to this difference shortly.
The Jacobian of this map is,

= %2 = JIF@) + Tl ~ F@) + (21— 22) o (2.43)

dF/dz is not finite everywhere and thus Mj is not canonical (symplectic) every-
where. Because a modified Heaviside map has similar discontinuous F behavior,
it follows that the algorithm behind the TRACE code is also nonsymplectic. Given
what we have just shown, we can argue that we can switch between two sym-
plectic methods in a nearly symplectic way, but experimentally such an algorithm
often shows poor error performance. Establishing near time-reversibility, as TRACE
does, is crucial for good error performance in switching between the two symplec-
tic maps discretely.

2.10.1 Symplecticity of variable timestep maps

In fact, we can also show that symplectic maps with variable timesteps also lose
exact symplecticity. We illustrate this as follows. Write a general map as,

ql = IZ(Z, h)

244
p1= l’)(Z, h)/ ( )

where we assume for the time being that & is a constant parameter. We can form
the Jacobian of (2.44), and insert in the condition (2.40). The constraint so that map
(2.44) is symplectic is,

dqa0,b — d,bdya =1, (2.45)
which is simply the requirement that the determinant of the Jacobian matrix be 1.
Now, assume / is no longer a constant parameter; e.g.,

q = a(z, h(z))

(2.46)
p1 = b(z, h(z)).

We take the Jacobian of map (2.46), again insert into (2.40), and use the new
constraint (2.45). We are left with the following constraint, assuming a # b:

0,h9,bdya — dyhd,adyb = 0. (2.47)
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Only special h(z) satisfying Eq. (2.47), depending on the specific map functions
a and b, constitute symplectic maps. It would be interesting to construct such
functions to test this constraint.
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Chapter 3

Self-Consistent Spin, Tidal and
Dynamical Equations of Motion

"Measure what is measurable, and make measurable what is not so."
— Galileo

Adapted From:
Lu. T., Rein, H., Tamayo, D., Hadden, S., Mardling, R., Millholland, S. & Laughlin, G.
2023, The Astrophysical Journal, Volume 948, Issue 1, pp.11
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Abstract

We have introduced self-consistent spin, tidal and dynamical equations of motion
into REBOUNDZ, a library of additional effects for the popular N-body integrator
REBOUND. The equations of motion used are derived from the constant time lag
approximation to the equilibrium tide model of tidal friction. These effects will
allow the study of a variety of systems where the full dynamical picture cannot
be encapsulated by point particle dynamics. We provide several test cases and
benchmark the code’s performance against analytic predictions. The open-source
code is available in the most recent release of REBOUNDX.

3.1 Introduction

For a myriad of interesting astrophysical systems - including but not limited to
close-in binaries, hot Jupiters, ultra-short period planets (USPs), and resonant
chains - the dynamics of a planet’s spin axis yield crucial insight regarding the
state of the system. In general the spin axis has profound implications for climate
and habitability - the rotation rate and obliquity of a planet greatly influences
climate stability via effects on heat flux and radiative balance (Spiegel et al., 2009).
In the specific case of the systems enumerated above, spin-orbit coupling cannot
be ignored - the dynamics of the system are impacted by the dynamics of the
spin vector, and vice versa. In these cases separately computing the dynamics
of the system and the evolution of the spin axes is insufficient - a self-consistent
framework is required to fully capture the dynamics of both the system and the
spin axes.

The equilibrium tide model of tidal friction was first described by Darwin (1879),
and has been expanded upon by many authors (Alexander, 1973; Hut, 1980, 1981;
Eggleton et al., 1998; Mardling & Lin, 2002). In the Darwin model, a star or planet
possesses a tidal bulge which lags by a constant small time interval from the
orientation it would have in the absence of dissipation. The equations of motion
governing the spin axis of each body depend on the body’s quadrupole moment
and the tidal forces acting on the quadrupole deformation, both of which in turn
depend on the magnitude and direction of the spin vector.

A plethora of results that draw on the equilibrium tide model have been re-
ported over the past century and a half. Enumerating a few examples relevant
to the present discussion, Goldreich & Soter (1966) constrained the internal dis-
sipation of the solar system planets based on secular orbital observations. Wu
& Murray (2003) invoked von Zeipel-Lidov-Kozai (ZLK) cycles and tidal friction
to explain the highly eccentric orbit of HD 80606b (Naef et al., 2001). Fabrycky
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& Tremaine (2007) investigated the evolution and orbital distributions of binary
stars using the same mechanism of ZLK cycles and tidal friction, and showed it to
greatly enhance the population of binary stars on short-period orbits. Mardling
(2007) showed that for co-planar multi-planet systems at tidal fixed points such as
HD 209458b (Charbonneau et al., 2000), eccentricity measurements yield incredi-
ble insights into the planet’s internal structure. This approach was also applied by
Batygin et al. (2009) to the HAT-P-13 system (Bakos et al., 2009), and generalized to
inclined systems by Mardling (2010). The above studies all utilized orbit-averaged
secular expressions. While significant insight can indeed be drawn from this ana-
lytic approach, they are inherently less flexible than N-body simulations, and the
orbit-averaging disallows analysis of resonant scenarios.

Hence, in recent years the development of N-body codes which self-consistently
consider the evolution of both the spin and dynamical evolution of the system us-
ing instantaneous tidal deformation forces has been a priority. To provide a few
excellent examples of such codes: Millholland & Laughlin (2019) used an N-body
code to show that secular resonance-driven spin-orbit coupling arising during
disk-driven migration is able to generate and maintain large obliquities in many
of the exoplanets discovered during the course of the Kepler Mission (Borucki
et al., 2010). The resulting obliquity-driven tidal dissipation provides an evolu-
tionary mechanism that can explain the overabundance of planets just wide of
mean-motion resonance. Bolmont et al. (2015) have modified the hybrid symplec-
tic integrator Mercury (Chambers, 1999) to consistently track the spin evolution
in their package Mercury-T. They used this code to draw insights regarding the
habitability of the Kepler-62 system (Borucki et al., 2013) and showed the two
planets in the systems habitable zone are likely to differ greatly in both obliquity
and spin rate, with natural consequences for their habitability. Kreyche et al. (2021)
further expanded upon this framework with SMERCURY-T, providing a framework
that can self-consistently track the orbit and spin evolution of bodies in a multi-
planet system under tidal influences from all bodies. Chen et al. (2021) present
their independent consistent symplectic integrator package as well, GRIT. They
have applied it to the Trappist-1 system (Gillon et al., 2017) and demonstrated
that the differences in transit-timing variations could reach up to a few minutes
over decade-long measurement baselines, and that strong planetary perturbations
could push the outer Trappist-1 planets out of synchronized states.

In this work we present our implementation of self-consistent equations of spin,
tidal and dynamical equations of motion in the REBOUNDx framework. REBOUND
(Rein & Liu, 2012) is a widely adopted open-source N-body integrator package.
REBOUNDx (Tamayo et al., 2020a) is an associated library of routines that permits the
flexible addition of additional physics to REBOUND simulations. Examples of such
additions include exponential growth and damping of orbits, radiation forces,
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and post-Newtonian corrections. While an implementation of equilibrium tide
theory is included in REBOUNDx (Baronett et al., 2022), this specific prescription
does not evolve the spin axes of the bodies and hence is valid only for cases where
spin-orbit coupling is negligible. This work introduces self-consistent equations of
motion which are aware of the structure of each particle into the REBOUNDx package.
While similar codes (mentioned previously) exist our framework provides unique
advantages by virtue of its inclusion in REBOUNDx, including a variety of other
rigorously-tested effects already present. These new effects in conjunction with
the existing framework will provide many avenues of exploration.

The structure of the paper is as follows: in Section 3.2 we describe the equilib-
rium tide model we have implemented, the approximations used and the reason-
ing behind our choices. In Section 3.3 we explicitly describe the coupled equations
of motion and additional physical parameters needed to describe systems in the
equilibrium tide model. In Section 3.4 we detail how our code fits into the REBOUNDx
framework - readers not interested in the details of the background physics of equi-
librium tide theory can skip to this section. In Section 3.5 we apply the code to a
few interesting test cases, and verify its accuracy with analytic results.

3.2 Equilibrium Tide Theory

The equilibrium tide model was first described by Darwin (1879). In this model, a
perturbed body assumes the shape it would have in hydrostatic equilibrium with
the time-varying gravitational potential of the system. Darwin (1879) expanded
the gravitational potential of the perturbing body as a sum of Legendre polynomi-
als. In the presence of internal dissipation, the body assumes a tidal deformation
that is slightly misaligned with the line of centers connecting the two bodies. Each
component contribution is associated with a frequency-dependent phase lag ¢,,
where v is the frequency at which that component is forced.

The precise frequency dependence of the phase lag components is a complex
function of internal structure, and hence extremely difficult to constrain. This has
necessitated further approximations, for which two primary schools of thought
have emerged - the constant time lag model (CTL) and constant phase lag (CPL).
These prescriptions differ in their treatment of the phase lag components. We will
briefly describe each approach.

The CTL approach directly follows from Darwin (1879) in the limit of a visco-
elastic body. Alexander (1973) was the first to evaluate the Darwin (1879) frame-
work in this regime: each tidal component ¢; is directly proportional to the /th
forcing frequency. This is equivalent to a fixed time lag 7 between the tidal bulge
and the line of centers between the two bodies, and 7 is the constant of propor-
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tionality relating €, and the relevant tidal forcing frequency. Hut (1981) provided
a novel re-derivation by approximating the tidal bulge as two point masses on
the surface of the body, and through energy & angular momentum conservation
arguments present orbit-averaged expressions for the evolution of the orbital ele-
ments and spin rate. Eggleton et al. (1998, hereafter EKH) expands upon the Hut
(1981) framework by considering the distortion of the shape of a fluid planet to
quadrupole order, in the presence of its own rotation Q and a tidal perturber. They
then assumed that the rate of loss of tidal energy is directly proportional to the
square of the rate of change of the shape (in the rotating frame), with the constant
of proportionality being a dissipation constant ¢ intrinsic to the interior structure
of each body. This dissipation constant is related to the time lag 7 (also intrinsic to
each body) via

T=""k, (3.1)

where r is the body’s radius and k;, its tidal Love number (parameterizing degree
of central concentration - typically denoted k,, but k; here to reduce confusion
with other subscripts'). Both the Hut (1981) and EKH prescriptions have the
advantage of introducing no discontinuities for low tidal frequencies, and makes
no assumptions regarding eccentricity. While the Hut (1981) framework assumes
low obliquity, EKH is valid for any orientation of the spin axis. This is the approach
we have implemented.

We briefly summarize the alternative school of thought, the CPL approach.
The CPL approach parameterizes the tidal response via the specific dissipation
function Q defined in Goldreich (1963). Today this quantity is commonly referred
to as the tidal quality factor:

Q"= 27-c1E0 56 (_%)dt’ (3.2)

where E is the peak energy stored in the orbit during a tidal cycle, and 4; dEdt is
the energy dissipated over a complete cycle. Via analogy to the simple harmonic
oscillator (MacDonald, 1964; Greenberg, 2009), Q may be related to a component
of phase lag € via

Q7! = tan 2e. (3.3)

In principle, Q is a function of the frequency and amplitude of the tidal pertur-
bation. However, laboratory and field experiments showed that for a variety of

'Not to be confused with the apsidal motion constant, notably denoted k in many of the cited
works and is equal to half the tidal Love number
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solid materials Q varies weakly, if at all, with frequency (Knopoff & MacDonald,
1958; Knopoff, 1964). Therefore, in the CPL prescription introduced by Goldre-
ich & Soter (1966), all tidal components are misaligned with the line of centers
by the same angle €. This approximation reproduces the behavior of Earth and
solid planets well, and is the prescription that has been widely adopted by the
exoplanet community. While appealing in its simplicity, the CPL model poorly
represents fluid bodies (whose Q varies directly with frequency, see Knopoff 1964)
and is only accurate to first order in eccentricity (Goldreich, 1963). In addition,
this model results in discontinuities when the tidal forcing frequency is close to
zero (Heller et al., 2011).

Other excellent reviews contrasting the CTL and CPL approaches and the
merits/drawbacks of either are Greenberg (2009), Leconte et al. (2010), Mardling
(2010) and Heller et al. (2011). Given the previously listed disadvantages of the
CPL model, we implement the CTL prescription of EKH in this work. As the CPL
prescription and parameterization of a Q intrinsic to each planet has been adopted
by the exoplanet community at large, for ease of use and intuition it is tempting to
utilize some sort of hybrid approach. For instance, Mardling & Lin (2002) present
a fully self-consistent framework in the CTL regime, but implement Q with the
assumption that Q can be expressed as some function of 7. Such formulations are
powerful in their accessibility. However, it is very important to note that these
approaches are only valid in certain limiting cases - in general, there is no simple
relation between Q and 7. In some cases of interest such a relation is possible
(Leconte et al., 2010): for Q > 1 and a synchronized circular orbit, the eccentric
annual tide with frequency n (mean motion) dominates. In this case, we can write

Q! ~2e~2nr. (3.4)

This is the assumption made in works including Mardling & Lin (2002), Wu
& Murray (2003) and Millholland & Laughlin (2019) to reconcile the tidal quality
tactor Q with the CTL model. We emphasize again that use of the EKH prescription
is advantageous in that it makes no assumptions about the orbit of a tidal perturber
(and hence is valid not just for satellite-primary tides, but for satellite-satellite tides
as well). The user may appeal to this relation to set 7 from a known value of Q,
with the understanding that it is strictly valid only in the case of a synchronized
circular orbit.

We recognize the contributions over the past decade by many authors (Ogilvie
& Lin, 2004; Efroimsky & Williams, 2009; Ferraz-Mello, 2013; Correia et al., 2014;
Storch & Lai, 2014; Boué et al., 2019; Teyssandier et al., 2019; Vick et al., 2019,
among others) in the development of more complex tidal formalisms. These
tidal models more extensively account for the rheologies of the body, and may
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indeed yield more accurate and nuanced results than the equilibrium tide model.
Implementing such models consistently into an N-body integrator is certainly an
avenue worth pursuing in the future. Given the present-day uncertainty around
the precise interior compositions of exoplanets, the equilibrium tide model is
elegant and powerful in its simplicity, and while exact quantitative details may
differ it is more than sufficient to draw powerful qualitative insights.

3.3 Equations of Motion

In this section, we explicitly describe the self-consistent spin, tidal and dynamical
equations of motion of the EKH we implement into REBOUNDx. These equations of
motion represent an extension of the equilibrium tide theory already implemented
in REBOUNDx by Baronett et al. (2022), which assumed the framework of Hut (1981)
but assumed no evolution of the spin axes.

First, we list the parameters (set and fixed at the beginning of a simulation) and
dynamical variables (set and evolved over time) associated with each body. For
point particle dynamics, the only parameter thatis required is the mass m, while the
necessary dynamical variable is the vector distance d between each pair of bodies.
Additional parameters and dynamical variables are required to describe dynamics
beyond point particles. The parameters are, for each body: a radius r, the fully
dimensional moment of inertia’l, the Love number k;, and the dissipation constant
o. The additional dynamical variables are, for each body, the three components
of the spin vector Q,, Q,, Q. (parameterizing both the magnitude and direction
of rotation). The equation of motion describing the relative vector separation
d = d; — d; between two bodies (denoted 1 and 2) is given

— (12) , ¢21) | £(1,2) | £21)
d=f, + fQD + fQD +i (3.5)
Explicitly, these forces are the familiar point particle gravitational acceleration:

G(m1 + mz)
fg = _Td.
The acceleration due to the quadrupole moment of body 1, accounting for both its

(3.6)

2While not directly used in the code, the dimensionless moment of inertia C = I/m7? is a useful
quantity that will be referenced later in the paper.
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spin distortion and tidal distortion produced by body 2:

my\ [5(€ -d)2d  Qid
)[ 247 245
Q- d)Q,  6Gmyd
R ]

55 = rika 1+
QD 1%L "

(3.7)

with an equivalent expression for the acceleration due to the quadrupole moment
of body 2, fgg). Furthermore, the acceleration due to the tidal damping of body 1
is:

(1) _ 9—61]{%'11%0 Mo + m_%
TF — 2410 2T (3.8)

[3d(d- @) + @dxd - ) xd],

and again an equivalent expression for the tidal damping of body 2. The addition of
dissipative tidal forces into a symplectic scheme is not a concern with the operator-
splitting methods applied by REBOUND - for an in-depth analysis see Tamayo et al.
(2020a). For a schematic representation of the relevant forces, see Figure 3.1.

The evolution of the spin vector of body 1 can be derived via matching torques
on the orbit and the extended body in concordance with conservation of angular
momentum, and is described by the differential equation

mqiy
mi + mp

L, = —( )d x (fo0) +£17), (3.9)

with an equivalent expression for the evolution of body 2’s spin vector. This
framework may be extended to any number of bodies. We note here one subtlety
that is not considered - each body reacts only in response to the tides it itself raises.
For example, in a three-body system in which all three bodies are endowed with
structure, body 2 reacts not only to the tides it raises on body 1 (which our code
does consider), but also to the tides raised on body 1 by body 3. While these effects
are expected to be minor for most systems, further work must certainly be done
for a more complete picture that includes these non-pairwise accelerations.
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Figure 3.1. Schematic representation of the additional parameters, dynamical variables
and forces needed to shift from a point particle framework to one in which the bodies are
endowed with structure. Each body is parameterized by a mass m, a radius , a spin vector
Q, a Love number k;, and a dissipation constant ¢ (directly related to the time lag 7 via
Equation 3.1), with the bodies separated by a separation vector d. The additional forces to
be considered are the quadrupole distortion force fop due to each body shape’s deviation
from a perfect sphere, and the tidal damping force frg arising from the dissipation of
energy via tidal friction. Not pictured is the planet’s obliquity 0, defined as the angle
between the spin axis and its orbit normal.
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3.4 Implementation

In this section we describe the implementation of the previously described self-
consistent spin, tidal and dynamical equations of motion in REBOUNDx®.

3.4.1 Spin, Structure and Tidal Parameters

To turn on the additional forces for a given body, the following parameters &
dynamical variables must be set to finite values: the radius r, the Love Number k;,
the dissipation constant 7, the moment of inertia I, and the spin vector components
Q,,Q,, Q..

e Ifk; and all of Q),, Q,, (), are set, the body will generate quadrupole distortion
forces. If 7 is also set, the body will generate tidal damping forces as well.

e If [ and all of Q,, Q), Q, are set, the evolution of the body’s spin axis will be
tracked. Note that the evolution of the spin axis depends solely on fqp + f1 -
in other words, both k; and o should be set as well to observe any interesting
dynamics of the spin vector; otherwise, the spin axis will remain stationary.

If none of these are set, the body will be treated as a point particle. Explicitly, it
will raise tides on other bodies endowed with structure, and its own motion will
be affected both by the associated quadrupole and tidal forces. However, it itself
will generate neither.

The framework of EKH we have adopted parameterizes the magnitude of the
tidal force via the dissipation constant ¢ with units of mass™'length *time™". ¢
has a complex dependence on internal structure and we recognize that heuristic
estimates of such a parameter will be unreliable and that few, if any, will have good
intuition for reasonable values of 0. For this reason, leveraging that Equation 3.1
relating 7 and o is always valid, the user-facing tidal parameter is chosen to be
7. The selected value of 7 is converted "under the hood" to the corresponding
value of ¢ for use in the equations of motion. It is worth noting that while direct
measurements of Q and k; exist for planets and satellites in the solar system (Lainey
et al., 2009; Lainey, 2016; Lainey et al., 2017), no such measurements exist for 7.
Hence, for many practical uses of the code the relation of Equation 3.4 must be
invoked to set 7 from measured values. There are no built-in warnings for when
this approximation is valid - it is left to the user’s judgement to use this conversion
as seen fit.

3Detailed documentation is available at reboundx.readthedocs.io.
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3.4.2 Dynamics

The forces applied to each body are calculated in a pairwise manner. For a given
pair of bodies, at each timestep the REBOUNDx parameters of each are checked to
assess which forces it will generate. The relevant accelerations are then applied to
each body, scaled to their relative masses. For example, in a system of two bodies

1 and 2, for the quadrupole distortion force generated by body 1 f&’?: body 1 will

(1,2)

experience the acceleration m,/(m; + my) - fQD ,

while body 2 will experience the
acceleration my /(my + my) - (—fgé)).

The additional forces implemented are compatible with different integrators,
and may also be used in conjunction with any of the other implemented effects in
the REBOUNDx library. The package supports a mix of point particles and bodies
with internal structure in one simulation.

3.4.3 Spin Axis Evolution

The spin vectors of each body are tracked using REBOUND’s built-in coupled ODE
structure. This is a new feature that was added in REBOUND version 3.19. It allows
the user to integrate any arbitrary set of ordinary differential equation structure in
parallel with the main N-body integration®.

Each set of ODEs can use the current dynamical state of the N-body simulation
in their right-hand side equation. Similarly, the current state of a user provided
ODE can be used in calculating additional forces for the N-body particles.

The user provided ODEs are integrated with an adaptive Gragg-Bulirsch-Stoer
(BS) integrator and a default tolerance parameters of 107°. If BS is also used for the
integration of the N-body equations of motion, then everything is simply treated as
one big coupled set of ordinary differential equations with one adaptive timestep.

Itis also possible to integrate arbitrary ODEs in conjunction with other REBOUND
integrators such as IAS15 and WHFast. These integrators are typically more ac-
curate and faster for integrations of planetary systems. In that case, only the
user-defined ODEs are integrated with BS after a successful N-body integration
step. BS still uses an adaptive timestep, but it also makes sure to synchronize its
timesteps to that of the N-body integration. This type of switching back and forth
between N-body and user-provided ODEs will lead to an error. However, if the
timescales involved in the user-defined ODEs are much longer than the timestep
of the N-body integration then this will be a small error (Tamayo et al., 2020a).
This is typically the case for evolution of spin vectors.

4More information on this API can be found athttps://rebound.readthedocs.io/en/latest/
ipython_examples/IntegratingArbitraryODEs/.
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To initialize the ODE structure associated with tracking the spin vectors,
the user needs to call the rebx_spin_initialize_ode function after all relevant
REBOUNDx parameters have been set. This function sets up the ODE which tracks
the spin vector evolution of every body with a valid moment of inertia I and spin
vector [Qx, Q,, QZ]. The spin vector REBOUNDx parameters ., Q,, (), are updated
before and after each ODE timestep - this means the user can pull the relevant
real-time values of the spin axis by looking up the REBOUNDx parameters, without
accessing the ODE framework itself.

At the moment, our implementation assumes there is a constant number of
particles, and a constant number of particles for which we have to track the spin
evolution.

3.5 Test Cases

3.5.1 Pseudo-Synchronization of Hot Jupiters

A simple test of the code is a comparison with secular orbit-averaged analytic
predictions. We use the analytic orbital evolution equations of Leconte et al.
(2010), which are the orbital evolution equations derived by Hut (1981) extended
to arbitrary obliquity and is equivalent to the EKH framework. These equations
describe a system of two mutually orbiting extended bodies, and describe the
evolution of the semimajor axis, eccentricity, spin rate and obliquity of each body.
The explicit expressions are given in Appendix 3.8.

We perform a basic test integration illustrating the spin-down and circulariza-
tion of a generic hot Jupiter orbiting a Sun-like star with both the REBOUNDx numer-
ical simulations and a numerical integration of the analytic equations of Leconte
et al. (2010), shown in the left subplot of Figure 3.2. The initial conditions of the
simulation are: m. = 1Mo, 7. = 1R, m, = 1M, 1, = 1R},a = 4072 x 1072 AU, e =
0.01, k. = 0.07,7. = 412x107*s,C, = 0.07,Q. = 27 days, 6. = 0,k., = 0.3,7, =
4.12s,C, = 0.3,Q, = 0.5 days, 6, = 30°. We used the symplectic WHFast integrator
(Rein & Tamayo, 2015) with a timestep of one tenth the initial orbital period. This
is the same test case used by Millholland & Laughlin (2019) to test the accuracy
of their numeric code, and we see very close agreement between numeric and
analytic results as they do.

One of the most notable predictions of the constant time lag model (noted upon
both by Hut 1981 and Leconte et al. 2010) is rapid evolution towards a pseudo-
synchronous state. More specifically, for typical hot Jupiter-like parameters, the
planetary obliquity is quickly damped to zero while the spin rate evolves toward
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Figure 3.2. A comparison between the numerical results of our REBOUNDx simulations
and analytic predictions using the framework of Leconte et al. (2010). The right subplot
shows the end state of 80 numerical simulations of hot Jupiters initialized at varying
eccentricities settling to their equilibrium pseudo-synchronous spin values, as well as the
analytic prediction of these values given by Equation 3.10. Each simulation lands on the
pseudo-synchronization curve and there is excellent agreement. The left subplot shows
the evolution of the obliquity, spin rate, semimajor axis, and eccentricity of a specific hot
Jupiter (corresponding to the lowest eccentricity case in the right subplot), where the black
line represents the analytic predictions and the red dots represent our numeric results. The
spin rate rapidly synchronizes and the obliquity is driven to zero. Again, there is excellent

Q/n

agreement between the analytic and numeric results.
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an equilibrium value given by
15,2 L 45,4 L 5 6
Qeq_ 1+ Je+ Fe" + e
B 3/2°
" (1 + 362 + %e‘*) (1 — 62)

To verify this prediction with our numeric code, we have run 80 additional sim-
ulations. The initial eccentricity of each of these additional simulations varied
from 0.01 to 0.8, with all other parameters kept identical. Each simulation is ad-
vanced for 1 Myr and their final spin rates are reported on the right subplot of
Figure 3.2, as well as the analytically predicted equilibrium rotation values given
by Equation 3.10. We see excellent agreement and the "pseudo-synchronization”
curve described in both Hut (1981) and Leconte et al. (2010) is well reproduced.
The earlier simple test integration corresponds to the lowest-eccentricity example.

(3.10)

3.5.2 Obliquity-Driven Sculpting of Exoplanetary Systems

An interesting result from the Kepler Mission (Borucki et al., 2010) is the statistical
excess of planet pairs just wide of first-order mean-motion resonances (Lissauer
et al., 2011; Petrovich et al., 2013; Fabrycky et al., 2014). Millholland & Laughlin
(2019, hereafter ML19) postulate that obliquity tides could be a viable explanation;
large axial tilts created by secular spin-orbit resonance spin-orbit coupling drain
orbital energy to heat. Specifically, ML19 used an independent N-body code to
demonstrate that convergent migration and resonant interaction precipitated by
capture into a mean-motion resonance is capable of generating and maintaining
large obliquities over long periods, and argue that this mechanism is common in
the compact, near-coplanar system typical of the Kepler multis. In the test case
used by ML19, two planets are initialized around a star just wide of the 3:2 MMR.
Both planets initially experience inward, convergent orbital migration, which is
switched off after 2 Myr. See Figure 3.3 for the dynamical evolution of the system:
as the planets are captured into the 3:2 MMR, the inner planet is kicked to > 50°
obliquity, which is maintained indefinitely. While this particular simulation is
associated with a specific set of parameters (see ML19 for details), no fine-tuning
is done and the qualitative behavior of the system is independent of slight changes
in initial parameters.

We reproduce the results of the ML19 simulation - Figure 3.3 compares our
two results. Our simulation is initialized in the same initial state as the ML19
simulation. The dynamics of the system use the WHFast integrator with a timestep
0f 0.159 x 10~ yrs - this is roughly 0.1 times the inner planet’s initial orbital period.
The inward migration is modelled with the modify_orbits_forces implemen-
tation (Kostov et al., 2016a; Tamayo et al., 2020a) in REBOUNDx: the 7, parameter
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Figure 3.3. A comparison between ML19 (left) and our results (right). The top subplot
shows the semimajor axis evolution of both planets as they migrate inward and are caught
into the 3:2 MMR. The blue points correspond to the inner planet, the green points to
the outer planet, and the black line to their period ratios. The middle subplot shows the
resulting obliquity evolution of the system. The dynamics of the system are identical -
while the spin evolution differs the final state of the system is very similar. The bottom
subplot shows the evolution of the relevant precessional frequencies of the system: the
axial precession and nodal recession periods (see Appendix 3.9 for details).

(describing the rate of migration) is set to —5 X 10° years and —4.54 x 10° years for
the inner and outer planet, respectively (as in ML19).

The qualitative end state behavior of the system - namely, the generation and
maintenance of a high-obliquity state for the inner planet - is well reproduced. The
quantitative differences in the evolution of the system are expected outcomes of
the different implementations of the spin-orbit coupling framework used. While
our framework is that of EKH, ML19 uses that of Mardling & Lin (2002) - these
frameworks are equivalent with the assumption Q' = 2¢ = 2nt. MLI19 uses
an initial Q = 10* for both planets - this is equivalent to o; ~ 8.76 x 10" and
o, ~ 1.36 x 10", In addition, Q = 10° is used for the central star - we assume
this is the tidal quality factor associated with the forcing frequency of the inner
planet (though qualitatively there is no difference for the particular problem), so
0. ~ 3.15 % 10° - all ¢ values are given in the default REBOUND units’. Otherwise,

5The default REBOUND units are My, AU, yr/2m as measures of mass, distance, and time, respec-
tively - this selection yields G = 1.
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the physical parameters and initial conditions were identical to ML19. In terms of
system evolution, there are three differences between our framework and ML19:
i) ML19 assumes the planets do not raise tides on the star, or one another - the only
tidal effects considered are the star raising tides on the planets. Our framework
assumes each interacting pair raises tides upon one another. ii) ML19 does not
employ the force splitting we have used (described in Section 3.4.2). iii) ML19
use a Bulirsch-Stoer integrator with a similar timestep to ours and an accuracy
parameter of 10713, These differences are expected to be minor and indeed do
not affect the qualitative final state of the system significantly. A more in-depth
dicussion regarding the evolutionary differences in the two codes may be found
in Appendix 3.9.

3.5.3 Exploring the ZLK effect

It was shown by Lidov (1962) and Kozai (1962) that in a hierarchical three-body sys-
tem characterized by a significant misalignment between the relative inclinations
of the inner and outer orbits, there may be high-amplitude coupled oscillations in
the eccentricity and inclination of the inner orbit. Commonly known as the Kozai-
Lidov effect, the initial discovery of this mechanism by von Zeipel (1910) has been
pointed out by Ito & Ohtsuka (2019) who hence advocate referring to this effect as
the von Zeipel-Lidov-Kozai (ZLK) effect, which we adopt here. This mechanism
has since been greatly expanded upon and is well studied - for an in-depth review,
see Naoz (2016) and references within. Of particular relevance to this work is the
effect of tidal friction when considered in conjunction with ZLK cycles. This was
notably explored by Wu & Murray (2003) regarding the orbit of HD 80606b and
Fabrycky & Tremaine (2007) to explain the overabundance of short-period binary
stars.

The ZLK mechanism, coupled with tidal friction, has often been invoked to
explain the unusual orbits of hot Jupiters and other close-in exoplanets. As the
planet approaches periastron during the high-eccentricity epoch of a ZLK cycle,
tidal dissipation becomes very significant and the planet’s semi-major axis shrinks.
Eventually, the ZLK cycles are damped out by tidal or general relativistic preces-
sions (Einstein, 1916). The characteristic period of a ZLK cycle is given (Fabrycky
& Tremaine, 2007):

2P% m. + my, + 1,

1 - ¢?)%/? 11
3nP, m, (I —e)™, (3.11)

TzLK =

where quantities subscripted with *, ¢, p correspond to the central body, an outer
perturber, and the planet respectively. Recall that the axial precession rate, «, scales
as a, 3. We define the ZKL frequency gzix = 27/7zx; (in this section the traditional
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g will be denoted g, for clarity). As the orbit of the planet shrinks gz x/a will
pass through unity, the criterion for resonance capture/kick. The effects of such a
resonant crossing on the planet’s obliquity® have yet to be explored.

We explore the obliquity evolution of a generic Neptune-like planet in a binary
star system experiencing ZKL oscillations. For concreteness, we initialize the initial
conditions of the simulation to fiducial values. These arem,. = m, = 1.0 Mg, . = Ry,
ki.=0.01,C.=0.07,m, =1 My, r, =Ry, a, =2 AU, e, =0.01, k; , = 0.4, C, = 0.25,
a. =50 AU, e. = 0.7, i, — i, = 80°. In terms of the dissipation parameter, we adopt
the approximation Q = (2¢)™! = (2n7)™! with initial fiducial values Q. = 10° and
Q, = 3 x 10°. The spins of central star and planet are initialized with spin periods
of ), = 4.6 days and (), = 1day, both with 0 obliquity. The outer perturber
is considered a point particle. We incorporate general relativistic precession via
the "gr_full" implementation in REBOUNDx (Newhall et al., 1983; Tamayo et al.,
2020a). While the WHFast integrator was used for the two previous examples and
in general has the fastest performance, in this case the high-eccentricity pericenter
approaches inherent to a ZLK cycle would force WHFast to apply the worst-case
timestep over the entire integration at great cost to performance. For this reason,
here we use the IAS15 adaptive-timestep high-order integrator (Rein & Spiegel,
2015). We use an initial timestep of df = 5 x 1072 years.

The results of this simulation are shown in Figure 3.4, where we plot various
quantities associated with the system’s planet. Before 6 Myr, we see the standard
ZLK oscillations. During the high-eccentricity epochs of each ZLK cycle, the
planet experiences very quick nodal recession and the resulting crossings between
acos 0 and g, results in several obliquity kicks in both directions. At 6.2 Myr,
the semimajor axis rapidly shrinks, which motivates a rapid decrease in g,z,; and
increase in o cos 0. When the two frequencies cross, the obliquity experiences a
large kick downward as is damped to near zero, where it remains indefinitely.
While the specific parameters of this simulation are given and changing these
parameters does significantly alter the evolution of the system, this damping of
obliquity at the crossing of gi...i and a cos 0 is robust regardless of the specific
parameters selected. We therefore conclude that planets which invoke ZLK cycles
to explain their present orbits are expected to have negligible obliquity. This
conclusion is particularly relevant given JWST observations of planets such as
HD80606b expected in the near-future (Kataria et al., 2021), which may be able to
constrain the obliquity of the planet.

®Obliquity here refers to the angle between the planet’s orbit normal and its spin axis. This
is not to be confused with the angle between the star’s spin axis and the planet’s orbit normal,
another common designation known as stellar obliquity.
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Figure 3.4. Results of the simulation demonstrating the ZLK mechanism with a fiducial
Neptune-like planet. The top subplot shows the evolution of the planet’s semimajor axis
(red) and perihelion (blue). The second subplot shows the planet’s eccentricity (blue) and
mutual inclination between planet and perturber (aqua). The third subplot shows the
obliquity of the planet, again defined as the angle between its orbit normal and spin axis.
The bottom subplot shows the evolution of the three relevant precessional frequencies:
acos 0, gzrk, and gopit- The gray dotted line spanning all four subplots denotes the point
at which g7k crosses a cos 6.

3.6 Summary

In this work, we presented self-consistent spin, tidal and dynamical equations
of motion integrated into the REBOUNDx framework (Tamayo et al., 2020a), as an
improvement over the point-particle dynamics that REBOUND (Rein & Liu, 2012)
was previously restricted to. The equations of motion used are those derived in
the constant time lag approximation of the equilibrium tide model by Eggleton
et al. (1998). The framework is set up such that these additional forces may be
easily turned on or off, and such that a mix of bodies with structure and point
particles may coexist in a REBOUND simulation. Extensive documentation and
example Jupyter notebooks are available reboundx.readthedocs.io.

We provide several interesting test cases and verify the results of the code
against both analytic predictions (Leconte et al., 2010) and previous work (Mill-
holland & Laughlin, 2019). We also apply the code to a fiducial system undergoing
von Zeipel-Lidov-Kozai oscillations and show that these systems are expected to
damp down to near zero obliquity at the conclusion of the oscillation period. These
are just a few examples of the myriad applications of this framework. We antic-
ipate our code to have wide-reaching applications to systems in resonant chains
such as Trappist-1 (Gillon et al., 2017; Luger et al., 2017; Tamayo et al., 2017; Agol
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et al., 2021) and TOI-1136 (Dai et al., 2021), mis/aligned systems (Rice et al., 2021;
Rice et al., 2023), ultra-short period planets (Millholland & Spalding, 2020; Dai
et al., 2021), and the general phase-space evolution of exoplanet obliquities (Su &
Lai, 2022) to name a few. We hope this extension to REBOUNDx will provide a useful
avenue in the study of exoplanet dynamics as a whole.
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3.8 Appendix: Secular Orbit Evolution Equations

The secular, orbit-averaged equations governing the evolution of the semimajor
axis, eccentricity, spin rate and obliquity of each body for a system of two mutually
orbiting extended bodies are (Leconte et al., 2010):

da 4P & Q;
- o Z; K| N@w=2 - Nuge)| (312)
de  1lae Q 18
G = Gy 2 e - ), 613)
o K NP
a - In [(1 + x7)w(e) - 2xlN(e)] , (3.14)
d@i _ Ki sin 61‘ Ql‘
T et ez -2ne), (3.15)

where x; = cos 0;, N(e), N,(e), N.(e), w(e), w.(e) are the functions of eccentricity:

152 , 45,4 , 56
1+2€+8€ + z€

N(e) = =2 , (3.16)
1+ 3e? 4 2004 4 185,64 25,8
N,(e) = 2 8 16 64 (3.17)

(1 — 62)15/2 ¢
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and 7 is the ratio of rotational to orbital angular momentum
m;+mj  LQ;
N = —— (3.22)

mim; g2p 1 — e?

3.9 Appendix: Exploration of Numerical Differences

In Section 3.5.2, we benchmarked our results against the independent N-body
code of ML19. We performed an integration on the same fiducial system they do,
and while the outputs qualitatively match, the quantitative evolution significantly
differs and merits exploration. Ultimately, these difference arise from sensitive
dependence on the precise location of the spin axis. In this appendix we examine
these differences in greater detail.

To understand these results it will be necessary to first provide a brief review
of the process of secular spin-orbit resonance and the dynamics of the spin axis
(for more in-depth reviews, see Ward & Hamilton 2004, Millholland & Batygin
2019, Su & Lai 2020, Lu & Laughlin 2022, as well as ML19 itself). We must first
define two relevant dynamical quantities. The first is the axial precession period
T,, defined as the period at which the planet’s spin axis precesses about its orbit
normal due to torques from the host star and the planet’s own rotation:
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where «a is the precessional constant, which is given (in the absence of satellites)

"The k used in Leconte et al. (2010) is the tidal Love number rather than the apsidal motion
constant described by Hut (1981).



by (Ward & Hamilton, 2004; Millholland & Laughlin, 2019):

o

1M* r SkL
=5 (5) 20, (3.24)

Where M, is the mass of the host star, m is the planet mass, r is the planet radius,
and a is the semimajor axis.The second relevant period is the nodal recession period,
the period at which the planet’s orbit regresses about the invariant plane of the
system. This period is given by T, = 27t/|g|, where the nodal recession rate g is the
rate of change of the longitude of ascending node of the planet’s orbit, €3,,;.. The
nodal recession rate arises from torques contributed by the other planets in the
system. In a two-planet system, assuming negligible stellar oblateness the nodes
of both planets regress at the same rate. For the comparison with ML19, these
periods are plotted on the bottom subplots of Figure 3.3.

The behavior of the spin vector is best understood in a frame of reference
rotating along with the planet’s orbital recession g, with x-axis aligned with the
ascending node and z-axis along the orbit normal. To interpret our results, we
first rotate our simulations into the invariant frame, with z—axis aligned with
the total angular momentum of the system and x-axis aligned with the line of
nodes. We transform from the invariant frame of the system to this frame via the
transformation

Q= AQ, (3.25)

where " is the unit spin axis in the frame that rotates with planet, Q is the unit
spin axis in the invariant plane, and A is the time-dependent rotation matrix

cos ,.0de sin (040 0
A=|-cosisinQ,p €0sicosD,pqe sinil, (3.26)
sinisin ()5 —SiNicos .4 COSi

In this frame, the trajectories of the unit spin vector trace out a family of parabolae
- the exact landscape of spin-axis phase-space trajectories depends on the ratio
|gl/a. For the seminal work of Colombo (1966), this phase-space landscape of the
spin axis is known as "Colombo’s Top” (see also Peale 1969, Ward 1975, Henrard
& Murigande 1987 and Su & Lai 2020). In this frame of reference, the equilibrium
states of the spin axis appear stationary. These equilibrium positions are known as
"Cassini States”, and depending on the exact value of |g|/«a there are either two or
four Cassini States. If |g|/a is below a critical value (|g|/a)cit, all four Cassini states
exist. At (|g]/a)qit, Cassini States 1 and 4 merge and disappear - above (|gl/@)crit
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Figure 3.5. Schematic depiction of the topology of Colombo’s top for various values of
|gl/a, along with the locations of the Cassini States. The red and pink dots/lines represent
two initially similar spin states that, through a process of resonant kick and capture,
ultimately end up on significantly different trajectories. This illustrates the sensitivity of
the spin-axis evolution on the instantaneous phase at the time of resonant capture/kick.

only Cassini States 2 and 3 exist. The critical value is a function of inclination i:

(Ig1/@)erit = (sin*? i + cos*®i)™** ~ 1 for small . (3.27)

Figure 3.5 shows the topology of Colombo’s Top for various values of of the ratio
Igl/a, as well as the location of the Cassini States (Cassini State 3 corresponds to a
retrograde spin state and is not shown). Cassini States 1 and 2 are stable equilibria
and adjacent trajectories will librate or circulate about them. Cassini State 4, on
the other hand, lies on the separatrix and is unstable.

Typically, two resonant mechanisms are invoked to explain high-obliquity
states. Both are relevant to our current study. The first of these is resonant capture,
and is motivated by the evolution of the topology of Colombo’s Top as the ratio
|gl/a decreases. If |g|/a approaches and crosses unity from above slowly enough
to preserve the adiabatic criterion, a spin axis that begins on a low-obliquity state
will follow Cassini State 2 as it evolves to high obliquity. The second of these
mechanisms is a resonant kick. This may occur in a few ways, but for the case
in interest this occurs upon rapid change of the ratio |g|/a such that the adiabatic
criterion is not preserved. While resonant capture is characterized by movement
of the trajectory itself, in a resonant kick the spin axis jumps from one trajectory to
another.

Figure 3.5 also overplots a demonstration of the sensitive dependence on the
precise instantaneous location of the spin axis, invoking both resonant mecha-
nisms. On the second subplot, two spin axis instances on the same trajectory are
shown - the two instances will have very similar obliquities but different phase
angles. If at the time shown both are given a small resonant kick, given their
proximity to the separatrix they will be kicked onto trajectories in two different
regimes - the red point is kicked onto a trajectory librating about Cassini State 2,
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while the pink point is kicked onto one circulating about Cassini State 1. As the
system evolves as a consequence of the changing |g|/«, the librating red trajectory
is excited to higher and higher obliquity, while the pink trajectory does not change
appreciably.

To more closely investigate the differences in our codes, Figure 3.6 zooms in on a
time slice of the simulation shown in Figure 3.3 where the first significant deviation
between the two results occurs (1.2 Myr to 1.7 Myr). The scatter plots show a polar
view of the spin axis location, while the inset plots show the evolution of |g]/a.
Analysis of Figure 3.6 clearly shows the mechanism described earlier in Figure 3.5:
atroughly 1.3 Myr a small kick is seen in the evolution of |g|/a. The causes the spin
axis to jump to a nearby trajectory - for planet 2, the slight difference in the spin
axis position at the moment of the kick is enough to knock the spin axes onto what
will become trajectories on diverging evolutions. The differences in evolution
between our results and ML19 can be understood then as slight deviation in the
physics from implementation differences resulting in significant differences due to
the probabilistic nature of the resonant capture/kick process (for more review on
the probabilistic nature of resonance, see Henrard (1982); Saillenfest et al. (2021a)).
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Figure 3.6. Scatterplots of the spin axis positions for the smaller time slice (from 1.2 to
1.7 Myr). The left column are results from ML19, while the right column are our results.
The plots with the blue colorbar (first row) correspond to planet 1, while the plots with a
green-red colorbar (second row) correspond to planet 2. Each subplot shows the position
of the unit spin vector in the XY plane (recall the z-axis is aligned with the planet’s orbit
normal) over time. Each subplot also shows an inset plot with three lines. The line with
the same colorbar as the scatterplot represents the evolution of the ratio |g|/a. The black
line represents the ratio T, /T, which is equivalent to |g|/a cos 6. The dashed grey line

marks unity for clarity.
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Spin-Orbit Dynamics
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Chapter 4

Tilting Uranus via Secular Spin-Orbit
Resonance with Planet 9

"Be extremely subtle, even to the point of formlessness. Be extremely mysterious,
even to the point of soundlessness. Thereby you can be the director of the
opponent’s fate."

—Sun Tzu

Adapted From:
Lu. T. & Laughlin, G. 2022, The Planetary Science Journal, Volume 3, Issue 9, pp.13
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Abstract

Uranus’ startlingly large obliquity of 98° has yet to admit a satisfactory explana-
tion. The most widely accepted hypothesis involving a giant impactor that tipped
Uranus onto its side encounters several difficulties with regards to the Uranus’
spin rate and its prograde satellite system. An obliquity increase that was driven
by capture of Uranus into a secular spin-orbit resonance remains a possible alter-
native hypothesis that avoids many of the issues associated with a giant impact.
We propose that secular spin-orbit resonance could have excited Uranus’ oblig-
uity to its present day value if it was driven by the outward migration of an
as-yet undetected outer Solar System body commonly known as Planet Nine. We
draw support for our hypothesis from an analysis of 123 N-body simulations with
varying parameters for Planet Nine and its migration. We find that in multiple
instances, a simulated Planet Nine drives Uranus’ obliquity past 98°, with a signif-
icant number falling within 10% of this value. We note a significant caveat to our
results in that a much faster than present-day spin-axis precession rate for Uranus
is required in all cases for it to reach high obliquities. We conclude that while
it was in principle possible for Planet Nine (if it exists) to have been responsible
for Uranus’ obliquity, the feasibility of such a result hinges on Uranus’ primordial
precession rate.

4.1 Introduction

The large obliquity of Uranus is a puzzle. Conservation of angular momentum in
the primordial Solar System naively suggests that as primordial gas giant planets
accrete from the planetary disk, their axial tilts should be driven to zero. In reality,
however, the Solar System’s gas giants span a range of obliquities, with Uranus
being most extreme with 6 = 98.7°. The prevailing and best-studied theory posits
that some type of giant impact was responsible - likely a 1-3 Mg body impacting
the primordial Uranus, simultaneously generating the large axial tilt and spurring
the formation of its satellite system (Harris & Ward, 1982; Benz et al., 1989; Slattery
etal., 1992; 1zidoro et al., 2015; Kegerreis et al., 2018, 2019; Reinhardt et al., 2020; Ida
et al., 2020; Rogoszinski & Hamilton, 2021). The theory has significant merit and
giant impacts are indeed both feasible and capable of explaining much of Uranus’
present-day configuration. In a few aspects, however, it encounters difficulties.
Rogoszinski & Hamilton (2021) present an in-depth discussion of both the merits
and drawbacks of the giant impact hypothesis. An immediate issue lies in the
near-match between the spin rates of Uranus and Neptune. Both Uranus and
Neptune spin significantly slower (with Ty ~ 17.2 hours and Ty ~ 16.1 hours)
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than their break-up speeds, which would naively be expected for an accreting
gas giant (Machida et al., 2008; Batygin, 2018; Bryan et al., 2018; Dong et al.,
2021; Dittmann, 2021). A giant impact would likely change a planet’s spin rate
- however, Rogoszinski & Hamilton (2021) show that the impactors required to
explain both Uranus” and Neptune’s obliquities (Ox ~ 30°) are unlikely to spin both
planets down similarly. In addition, the prograde Uranian satellite system at first
glance appears incompatible with a giant impact. Morbidelli et al. (2012) argues
that given a single impactor the system would be expected to have a retrograde
orbit. To account for the observed prograde orbit, Uranus would either require an
initially large obliquity (on the order of ~ 10°) or multiple impactors. Furthermore,
impactors that are sufficiently large to explain the axial tilt of Uranus (greater than
1 Mg) are expected to produce disks that exceed the total mass of the Uranian
satellite system by an order of magnitude (Kegerreis et al., 2018; Reinhardt et al.,
2020). A possible solution has been offered by Ida et al. (2020), who show that the
incongruity in impact-generated disks can be reconciled if the evolution of a water-
vapor disk is taken into account. By assuming ice-dominated compositions for
both Uranus and its impactor, Uranus’ present-day satellite system is reproduced.

We investigate an alternative explanation of Uranus’ large axial tilt by positing
the capture and subsequent evolution of the planet in secular spin-orbit resonance.
The resonant capture mechanism is slow enough to preserve both the structure of
the planet’s satellite system and its spin rate (Goldreich, 1965), which circumvents
many of the problems with the giant impact theory. Furthermore, the process
is potentially responsible for Jupiter’s 3° (Ward & Canup, 2006; Vokrouhlicky &
Nesvorny, 2015) and Saturn’s 27° (Ward & Hamilton, 2004; Hamilton & Ward,
2004) obliquities; plausibility in these instances is supported by the near-match
between Jupiter’s and Saturn’s spin precession frequencies and the contibuting
nodal regression frequencies driven by Uranus and Neptune, respectively. Re-
cently, however, Saillenfest et al. (2021a,b) have argued that early resonance with
Neptune is incompatible with the fast tidal migration of Titan, and suggest that a
later entry to the resonance driven by nodal precession evolution stemming from
Titan’s migration is responsible for Saturn’s obliquity. A similar process, driven
by the migration of the Galilean satellites, may excite Jupiter’s currently small
obliquity to larger values in the future (Saillenfest et al., 2020).

Uranus’ current spin precession frequency is far too slow to be a near-match for
any mode of secular forcing provided by the present-day Solar System. Significant
work has thus been done to explore past Uranian evolutionary pathways which
would result in a closer match. Millholland & Batygin (2019) studied the effect
of an evolving circumstellar disk on the obliquities of both Uranus and Neptune,
and concluded that disk-induced spin-orbit resonance is unlikely to be the cause
of their axial tilts. Boué & Laskar (2010) posit that Uranus’ current obliquity is
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possible if Uranus had an additional large moon present in the past - however,
this moon would require a mass of up to 1% the mass of Uranus and would have
needed to be dispensed with after the resonance’s action was complete. The study
of Rogoszinski & Hamilton (2021) posited a circumplanetary disk that increased
the Uranian spin precession frequency, and was able to account for obliquities
of up to 70°. More recently, Rogoszinski & Hamilton (2021) investigated the
effect of Neptune’s migration on a primordial Uranus placed between Jupiter and
Saturn. They concluded that 90° obliquities are achievable, but only on unrealistic
timescales; 40° tilts are obtainable upon more reasonable timescales. In all cases,
however, impacts must be invoked to subsequently drive the obliquity to the
present-day value of 98°.

The review of Batygin et al. (2019) summarizes the development of the hypoth-
esis that the observed orbital alignment of long-period trans-Neptunian objects is
maintained by the presence of an as-yet undetected (5 - 10 Mg) body (known as
Planet Nine) in the outer reaches of the Solar System. The dynamical effect that
such a body, if present, would exert on Uranus thus merits investigation. In this
article, we examine the effect that dynamical evolution (in the form of outward
migration) of Planet Nine would have on Uranian spin axis, and we find that un-
der certain conditions, a Planet Nine could have generated the dramatic spin-orbit
misalignment that constitutes Uranus’ most uniquely defining feature.

The paper is structured as follows. In Section 4.2, we outline the relevant values
of axial precession and nodal regression. In Section 4.3, we use these quantities
to discuss the physics involved in the process of secular spin-orbit resonance, and
introduce the equation of motion that dictates the evolution of the spin axis. In
Section 4.4, we describe our procedure for modeling the evolution of the Uranian
node. We also discuss how we model the dynamical evolution of Planet Nine and
its effect on the Uranian orbital evolution. In Section 4.5, we report the resulting
obliquities we are able to achieve, and we discuss and draw conclusions in Section
4.6.

4.2 Precessional Frequencies

In the presence of torques from a host star and a satellite system, a planet’s spin
axis will precess about its orbit normal (Goldreich, 1965) with period (given low
orbital eccentricity)

271

= — 4.1
| cos O (41)

where 0 is defined as the planet’s obliquity, or the angle between the spin axis and
orbit normal, and « is defined as the precessional constant. Figure 4.1 provides a
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Orbit Normal

Figure 4.1. Torques associated with the host star and satellite system cause the spin axis
to precess about the orbit normal with frequency a cos 0.

schematic representation.

The precessional constant parameterizes the rate at which the spin axis pre-
cesses about the orbit normal. In the case where the satellite system exhibits
prograde orbits in the equatorial plane (as is the case for the Uranian system), it is
given by (Tremaine, 1991; French et al., 1993; Rogoszinski & Hamilton, 2021)

20 A+17
where w is the planet’s spin frequency, n its orbital mean motion about the host
star, |, is the quadrupole moment of the planet’s gravitational field, and A is its
moment of inertia normalized by M, R?. The quantities g and / account for elements
of the planet’s satellite system or circumplanetary disk, with g being the effective
quadrupole coefficient and / the angular momentum normalized by M,,Rga). For
a satellite system (Tremaine, 1991; French et al., 1993; Ward & Hamilton, 2004;

(4.2)
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Rogoszinski & Hamilton, 2021) one has

1 Mi a; 2
12325 (&)
; 4.3)
= Ma’n;,
M, R Z it

with the sum running over all i satellites, and where M;, a;, n; are the mass, semi-
major axis and mean motion, respectively, of each satellite.
Considering the major satellites of Uranus, from Equations 4.2 and 4.3, we can
calculate the present-day value of a for Uranus. Using ], = 3.343 x 107> (Dermott
& Jupp, 1984) and A = 0.225 (Yoder, 1995), we find that @ = 0.045 arcseconds/yr.
At its current 0 = 98° obliquity, Uranus’ axial precession period is T, = 169 Myr.
Simultaneously, in the presence of torques from neighboring planets and other
large bodies, the orbital plane of a planet will recess about the normal to the
invariant plane of the system (the plane perpendicular to the system’s overall
angular momentum vector). The period of recession is given by T, = 2m/|g|,
with ¢ = Q, where Q is the longitude of the ascending node. Figure 4.2 shows a
schematic view of the motion.

4.3 Spin-Orbit Resonance

Secular spin-orbit resonance trapping has repeatedly been shown to be a possible
mechanism for generating substantial planetary obliquities. The dynamics of the
phenomenon are well-studied (Peale, 1969), and its action has been shown to be
plausibly responsible for Jupiter’s 3° (Ward & Canup, 2006) and Saturn’s 26.7°
(Ward & Hamilton, 2004; Hamilton & Ward, 2004; Saillenfest et al., 2021b,a) axial
tilts. Exciting obliquities via secular spin-orbit resonance has been shown to be
self-consistent with the orbital migrations of Uranus and Neptune predicted by
the Nice Model (Vokrouhlicky & Nesvorny, 2015).

4.3.1 First Order Spin Axis Equation of Motion

To a first order of approximation, resonant motion of a planet’s spin axis can be
exhibited with the restrictive assumption of constant I, « and g. In a coordinate
frame rotating with angular frequency g centered on the orbit normal (which
we will call the "rotating frame"), the equation of motion can be approximated
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Invariant Plane Normal &

Orbit Normal 7 |

Spin Axis §

Perihelion

Inclination

Figure 4.2. Torques associated with perturbing planets cause the inclined orbit of a planet
(with normal 71) to recess about the invariant plane normal k, at a rate of ¢ = Q. The
planet’s spin axis 3 is also shown. Not shown on this figure is the longitude of periapsis
®,definedas® = Q + w
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(Tremaine, 1991; Ward & Hamilton, 2004)

ds*

dt
where §°, 1, k are the unit vectors pointing in the direction of the spin axis, orbit
normal, and invariant plane normal, respectively. The superscript * notation on
the unit spin vector is to differentiate the spin vector defined here in the rotating
frame as opposed to in the invariant plane of the system, which will be defined
later.

a (@ -n)@E xn)+g@ xk), (4.4)

4.3.2 Cassini States

The spin axis may be defined in terms of two angles - the obliquity 0, previously
defined, and the precession angle ¢, which is defined as the angle between the
projections of § and k onto the plane perpendicular to 7. These angles can be
related to the position of the unit spin vector in Cartesian coordinates Morbidelli
(2002)

$y =sinOsiny, s, =sinOcosy, s, = cos O (4.5)

The Hamiltonian that governs the motion of the spin axis is well known (Mor-
bidelli, 2002). In Cartesian coordinates (in the rotating frame),

yz)z N cos(I)

W:g(l—lxz—— > g(x2+y2)

1

2 2 2
in(l [

_ Slr;( )gx 4_x2_y2,

where [ is the planet’s inclination, and the Cartesian coordinates x and y can be
expressed in terms of the obliquity and precession angle

(4.6)

0 0
szsinicosw,y=ZSin§singb 4.7)

For a full derivation, see Millholland & Batygin (2019). The motion of the spin
vector is confined to the level curves (curves of constant energy) of the Hamilto-
nian. As the ratio a/g evolves, so do the locations of the level curves. At a critical
value,

3/2
(a/8)erit = — (sin2/31 + cos?® I) / , (4.8)

a separatrix appears and additional equilibrium points emerge (Ward & Hamil-
ton, 2004; Fabrycky et al., 2007). See Figure 4.3 for a plot of the level curves of
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Figure 4.3. Level curves of the spin axis Hamiltonian (in black) with a/g = 1.25 >
(/8)crit, with the Cassini state equilibrium points labeled (Cassini State 3 corresponds
to a retrograde spin state and is not shown). Spin axis trajectories are confined to these
level curves. The colored lines tracks the evolution of one such trajectory as the ratio |a/g]
changes - note how the curve begins as a circulating trajectory and evolves into a librating
one.

the Hamiltonian in the rotating frame of the planet at a/g > (a/g)i (the neces-
sary criterion for resonant capture, see Section 4.3.3). The equilibrium points at
the extrema of the Hamiltonian are known as Cassini states, and correspond to
configurations such that in the invariant frame, (Colombo, 1966; Peale, 1969)

e 5,71 and k are coplanar

e 3and 71 precess about k at the same rate.

Clearly, in the rotating frame centered on the orbit normal, the spin axis position
appears stationary. Four such equilibrium points exist: states 1, 2 and 4 are shown
on Figure 4.3, while state 3 is retrograde and thus projects into the downward-
facing hemisphere. For a pair of values of a/g and inclination I, the obliquities O,
of the corresponding Cassini states are given by (Ward & Hamilton, 2004)

% cosO.sin O, + sin (6, — I) = 0. (4.9)

For a/g < (a/g)wit states 1 and 4 do not exist (Ward & Hamilton, 2004), so we
consider motions of the spin axis about Cassini State 2. Figure 4.3 shows that for
trajectories that lie close to Cassini state 2, the spin axis will librate in a banana-like
trajectory about the equilibrium, rather than circulating the origin.
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Figure 4.4. Result of a simple evolution of the ratio |a/g|, obtained via integration of
Equation 4.4. The upper left plot displays the evolution of |/ g| imposed on this simulation
- note that the ratio |a cos 0/g| saturates at unity. The bottom left plot shows the resulting
obliquity evolution. The right plot shows the location of the spin axis over the evolution
period. We have zoomed in on one libration timescale to explicitly show the banana-like
libration motion the spin axis exhibits when captured into resonance.

4.3.3 Resonant Capture

If the ratio /g changes slowly enough, the phase space area enclosed by a tra-
jectory remains constant. This is known as the adiabatic criterion and is satisfied if
the rate of change in /g is much slower than a libration timescale (Millholland
& Batygin, 2019). As the ratio |a/g| increases, Cassini state 2 will move outward
and an orbital trajectory trapped in resonance will be forced to larger and larger
obliquities. This evolution is overplotted in Figure 4.3.

If the adiabatic condition is satisfied, resonant capture occurs when the ratio
lae cos 0/ g| approaches unity from below. At low obliquities, this is equivalent to
the condition that |/ g| approach unity from below. By contrast, a passage through
unity from the opposite direction leads to an impulsive, potentially large kick to the
obliquity, without capture into resonance (Ward & Hamilton, 2004). If resonance
capture occurs, the ratio T,/T, oscillates around an average value of unity and
large increases in obliquity can occur. Figure 4.4 shows an example evolution of
the ratio |a/g| and the resultant obliquity evolution.

4.3.4 Spin Axis Equation of Motion

In reality, a planet’s orbital inclination is not constant, the orbit is eccentric, and
the value of a can vary with time. The simple equation of motion in this event
no longer gives an accurate picture. In the invariant plane of the solar system,
the orbital inclination and longitude of ascending node may be decomposed into
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more than one harmonic. The motion of the unit spin axis § in this regime is given
by (Ward, 1979; Hamilton & Ward, 2004):

B a(sps - 5,8 +s) | SN E A
Syl = (1 —e2)32 S:pE =81 |/ (4.10)
S, —5:9& — 8ypé
which in turn draws on functions of the planet’s orbital elements
. (T .
p =2sin (E)st
g =2sin (é)cos()
(4.11)

where e is eccentricity, I is inclination, @ is the longitude of periapsis and € the
longitude of ascending node. To see librations we must transform back into the
frame of the planet’s orbit via (Ward, 1974)

&= A3, (4.12)

where §" is the unit spin axis in the frame that rotates with the angular momentum
vector of the planetary orbit, § is the unit spin axis in the invariant plane, and A is
the time-dependent rotation matrix

cos Q sin Q) 0
A=|-cosIsinQ coslcosQ sinl|, (4.13)
sinlsin(Q) —sinlcosQ cosl

where Q(t) and I(t) vary in time.

4.4 Nodal Evolution Modeling

Approaches of escalating complexity can be employed to model the evolution of
the Uranian nodal precession, g in response to perturbations from the other bodies
of the Solar System.
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4.4.1 Laplace-Lagrange Secular Theory

Short of full numerical simulations that track the Uranian node, significant phys-
ical intuition can be gained from the linear approximation provided by Laplace-
Lagrange secular theory. Secular theory describes the orbital motion of planetary
orbits as an averaged approximation of their long term motions. Terms in the
gravitational disturbing function that include the mean longitude are ignored in
this approximation, as they vary relatively rapidly and in the long term average
to zero. In the late 1700s, it was determined that to lowest order, the time depen-
dence of the eccentricities e (Laplace, 1775) and the inclinations I (Lagrange, 1778)
of a planetary system with k bodies are described by a system of first-order linear
differential equations:

—Zl— —Zl—
di= - v {A" Ok} Z" (4.14)
dt |, Or Bi||Ci

| Ck Ck

which was applied to the motion of the solar system planets by Laplace (1784) (for
an in-depth review of the development of Laplace-Lagrange secular theory, see
(Laskar, 2013)). Here z = eexp V-1@ and ¢ = 2sin(I/2) exp V-1Q. Ay and By are
k x k matrices whose elements depend solely on the masses and semi-major axes of
the k planets, and 0; denotes the k X k zero matrix. At this level of approximation,
the time evolution of z; and (; is given as a sum of sinusoidal contributions

Zi = aije ﬂyit
- (4.15)
Gi=) PBie Vo

j=1

where the quantities 6;, ;;, v;, Bi; are the eigenvalues and eigenvectors of the A
and By matrices, respectively. The i and j indices range from 1 to k and represent
each planet in the system. Of particular interest to our analysis is the quantity §;,
which determines the "forcing frequency” at which the jth body perturbs Q.

A slightly modified version of the foregoing theory that is specific to the Solar
System (and which partially accounts for additional Jupiter-Saturn interactions)
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Figure 4.5. The evolution of the four outer planets as described by the secular theory of
Laplace (1784). The upper plot shows the evolution of inclination of all four outer planets
- note the complex yet semi-periodic behavior. The bottom plot shows the evolution of g,
the rate of change of Uranus’s node position.

was developed by Brouwer & van Woerkom (1950), and was notably reprinted in
(Murray & Dermott, 2000).

Given the time evolution of z; and (;, the orbital elements (see Equation 4.11)
including € can be recovered. Figure 4.5 shows the inclination evolution of the
four outer planets implied by secular theory, as well as the evolution of the Uranian

8.

4.4.2 Effect of Planet Nine

Planet Nine is a hypothesized body in the outer Solar System whose existence
has been inferred from the apparent apsidal confinement of long-period trans-
Neptunian objects (Batygin & Brown, 2016). For a more detailed review of the
evidence for Planet Nine, see (Batygin et al., 2019). The most recent Markov Chain
Monte Carlo simulations (Brown & Batygin, 2021) give Planet Nine’s best-fit orbital
parameters:

my = 6.972° Mg
ag = 460.77175% AU
es = 0.370]

ig = 15.6737 °.

(4.16)
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In contrast, however, the recent study by Batygin & Brown (2021) suggests that a
more eccentric and more distant Planet Nine may be required.

In situ formation of Planet Nine is believed to be unlikely (Kenyon & Bromley,
2016), and discussion has settled on two preferred possibilities for its origin. One
possibility is that it formed alongside the four giant planets and subsequently mi-
grated outward to a much more distant orbit (Thommes et al., 1999; Brasser et al.,
2012; 1zidoro et al., 2015; Bromley & Kenyon, 2016; Li & Adams, 2016; Eriksson
etal., 2018). A second possibility is that it was captured from a passing star within
the Solar System’s stellar birth aggregate (Li & Adams, 2016; Mustill et al., 2016;
Parker et al., 2017). If this second scenario holds, there would be no plausible
connection to the Uranian obliquity, so we focus on long-distance outward migra-
tion of Planet Nine as an assumed formation pathway. The parameters given in
Equation 4.16 assume a prior involving Planet Nine’s origin and eventual ejection
from the Jupiter-Saturn region.

Batygin et al. (2019) proposed a two-step migration process: First, Jupiter
or Saturn scatter Planet Nine onto a temporary high-eccentricity orbit, which
was then circularized via gravitational perturbations from nearby stars in the
cluster. It should be stressed, however, that this is an unlikely scenario - the
probability of a Planet Nine-sized body settling between 100 and 5000 AU due
to stellar perturbations is no more than a few percent (Bailey & Fabrycky, 2019).
A more likely alternative involves circularization via dynamical friction with a
circumstellar disk. With a gaseous disk, Bromley & Kenyon (2016) were able to
reproduce orbits similar to that of Planet Nine post-scattering, with a preference
towards very slowly decaying disks (with dissipation timescales on the order
of 10 Myr). Subsequently, numerical simulations of Carrera et al. (2017) were
used to suggest that a 60-130 Mg planetesimal disk formed beyond 100 AU as a
consequence of the streaming instability. Eriksson et al. (2018) found that a 10 Mg
planet scattered into such a disk from the vicinity of Neptune’s orbit has a 20—30%
chance of reproducing a Planet Nine-like orbit.

As Planet Nine moves outward in its putative migratory trajectory, the magni-
tude of its perturbations on the Uranian Q) steadily diminish (see Figure 4.6). The
rate of change of the Uranian node, g, thus decreases with time. In the event that
the precession factor, a, remains constant, this provides a pathway for resonance
capture as the ratio |a/g| evolves to reach unity.

4.4.3 Numerical Simulations

The Laplace-Lagrange theory assumes constant semi-major axes for all planets,
and additionally fails in the limit of significant short-period terms (Camargo et al.,
2018), so a migrating Planet Nine cannot be modelled in this framework. We
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Figure 4.6. Planet Nine’s forcing frequency on Uranus as a function of semi-major axis.
Each line corresponds to a Planet Nine of varying mass (in Earth masses).Note that the
forcing frequency does not go to zero even as Planet Nine’s mass does - this is because
each eigenfrequency does not correspond one-to-one with a planet, but rather is simply
dominated by a given body.

instead turn to full N-body integrations that employ the REBOUND package
(Rein & Liu, 2012) with the adaptive high-order IAS15 integrator (Rein & Spiegel,
2015). We incorporated orbit-averaged physical forces to simulate the outward
migration of Planet Nine using the modify_orbits_forces implementation (Kostov
et al., 2016b) in the REBOUNDx package (Tamayo et al., 2020a).

An overview of our modeling procedure is as follows. A REBOUND simu-
lation is initialized with the Sun and the four outer planets in their present-day
configuration, with orbital element values from the NASA HORIZONS database.
Planet Nine is then initialized in its starting position. Free parameters associated
with Planet Nine include its mass, its eccentricity, and its inclination. We set the
initial semi-major axis and 7, (which parameterizes the migration rate as seen in
Kostov et al. (2016b)) constant. The system as thus specified is in the frame of the
ecliptic. We then determine the invariant plane of the Solar System with Planet
Nine accounted for, via the method outlined by Souami & Souchay (2012). The
normal vector to the invariant plane is

N
Lt =Y mif X, (4.17)
j=1

where m;, r;,v; are the mass, barycentric position, and barycentric velocity of the
jth body, respectively. We recalculate the inclination of each planet in the invari-
ant frame by taking the angle between L,; and the planet’s own orbital angular
momentum vector. Each simulation is then integrated forward for 10® years. The
results of the REBOUND simulation (namely, values for the Uranian inclination,
eccentricity, {2, and @) are used to construct time evolutions of the orbital elements
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e(t), p(t),q(t). The orbital elements at each timestep are then passed into the spin
axis equation of motion (eq. 4.10) to track the motion of the spin axis. The rate of
nodal regression ¢ = Q is itself not used as an input to our spin vector equation of
motion, but is useful for illustrative purposes - this quantity is calculated numeri-
cally from the value of Q(t) recovered at each timestep. In each case, Uranus’ spin
axis is initialized with an obliquity of 2.5°. This value is arbitrarily chosen, but any
small initial tilt should yield similar results. We test each REBOUND simulation
with various values of a linearly spaced between 0.005 and 6 arcseconds / yr and
track the results.

4.5 Results of N-Body Simulations

In this section we present selected results from our N-body simulations. For
a compiled list of all our simulation results as well as the source code used,
see www.github.com/tigerchenlu98/tilting-uranus. Throughout all of our
simulations, the magnitude of the spin vector differs from unity by less than one
part in 10°.

4.5.1 Solar System Model

We now examine simulations of a Solar System dynamical model that includes
Jupiter, Saturn, Uranus, Neptune, and Planet Nine. To save computation time
the terrestrial planets were not included, as their effects are negligible. For each
simulation, we initialize Planet Nine at 40 AU. The 7, parameter, as seen in Kostov
et al. (2016b), parameterizes the rate of change in the system. The evolution of
Planet Nine’s semi-major axis is given by

a = age’™, (4.18)

In practice, perturbative influences from the other planets lead to slightly more
complex realized semi-major axis evolution and hence a non-deterministic final
a. We set 7, = 4 x 107 years for each of our simulations - for this value, the
semi-major axis progresses through 2.5 e-folding timescales. We emphasize that
our choice of initial 2 and 7, do not reflect Planet Nine’s true initial position
or migratory trajectory - recall that Planet Nine is believed to have originated
with the giant planets. Rather, the value of 40 AU is picked to encapsulate as
much of the evolutionary trajectory as possible, without sacrificing the stability of
the simulation. As the effect of Planet Nine on the Uranian Q only increases for
smaller semi-major axis (per secular theory), bringing Planet Nine’s initial position
closer in would serve to bring the ratio a/g down, which favors resonant capture.
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Therefore, in principle any smaller initial a9 and any 7, satisfying the adiabatic
criterion should yield similar or larger obliquities than our simulations. We also
emphasize that the given migration scheme does not represent the most accurate
physical evolutionary pathway of Planet 9's semimajor axis. In reality, Planet 9’s
outward migration was likely not smooth and its expansion rate likely decreased
with time. We will discuss a more realistic migration scheme in Section 4.5.4 - for
now, the simple exponential model of semimajor axis growth is selected for ease
of use and is sufficient to draw first-order conclusions, given that as long as the
evolution remains within the adiabatic limit the precise evolution of the semimajor
axis should not significantly impact the dynamics.

Given the uncertainty regarding Planet Nine’s orbital parameters, we first
analyze results drawn from a wide range of possible orbits

mg = 5-10 ME
a9 = 400 — 800 AU
(4.19)
g =02-0.5
ig = 15° — 25°.

where my, €9, ig are the initial mass, eccentricity and inclination of Planet Nine in
the frame of the ecliptic, respectively. With the context from the wide distribution,
we then more closely examine the narrow parameter range suggested by the recent
Brown & Batygin (2021) study:.

Using draws from the wider range of parameters, we performed a total of 48
dynamical simulations, using the values

mg € {5 Mg, 7 Mg, 10 ME}
es € 10.3,0.4,0.5,0.6) (4.20)
ig € {15°,20°,25°,30°)}.

Of these 48 simulations, nine resulted in one or more of Uranus, Neptune, or Planet
Nine being ejected from the Solar System. These cases are beyond the scope of
this paper and are not analyzed further. The remaining 39 simulations exhibit a
range of dynamical stability for the orbits of Uranus and Neptune (Jupiter and
Saturn remain stable in all cases). We classify them into three categories - stable,
slightly unstable, and significantly unstable. Each is defined below (see Figure 4.7 for
examples of each case).

e Stable simulations: the semi-major axes of Uranus and Neptune do not di-
verge from within 10% of their initial values for the duration of the run.
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Figure 4.7. Examples of Uranus and Neptune’s semi-major axis evolution for the three
stability cases we have defined. The stable case was produced by a Planet Nine with
mg = 5 Mg, eg = 0.4,i9 = 30°, the slightly unstable case with m9 = 5 Mg, eg = 0.6,19 = 20°,
and the unstable case with mg = 7 Mg, eg = 0.4,19 = 15°.

Eighteen of the simulations produced stable outcomes by this measure.

e Slightly unstable simulations: the semi-major axes of Uranus and/or Neptune
diverge by more than 10% from their initial values, but return to within this
threshold by the end of the run. Four simulations are slightly unstable.

e Significantly unstable simulations: the semi-major axes of Uranus or Neptune
differ more than 10% from their initial values at the end of the run. Seventeen
simulations are significantly unstable.

Figure 4.8 summarizes results from our simulations. The format is as follows -
each grid cell represents the most stable simulation for an eccentricity/inclination
value pair. If two simulations with comparable stability existed for an eccen-
tricity/inclination pairing, the one with the higher maximum obliquity obtained
was chosen. Of these simulations, the highest maximum obliquity achieved was
105.6°, while the lowest maximum obliquity was 75.9°. The average maximum
obliquity reached is 94.7%. 13/16, or 81.3%, reach a maximum obliquity within
5% of Uranus’ present day obliquity of 98° or higher, while 6/16 reach a maxi-
mum obliquity greater than 98°. It must be stressed that these high obliquities are
reached only with high Uranian precession rates - the associated ramifications will
be discussed further in Section 4.5.2.
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Figure 4.8. Summary of results of our simulations. Each grid cell contains the most stable
result for that eccentricity/inclination pairing. The background color of each grid cell
shows the maximum obliquity reached (see colorbar on the right). The size of the central
black dot represents the mass of Planet Nine used in that run - small for for 5 Mg, medium
for 7 Mg, and large for 10 Mg. The number inside each black dot is the maximum obliquity
reached to the nearest degree. The colored square on the upper left hand corner of each
grid cell represents the stability of that run - green for stable, yellow for slightly unstable,
and orange for significantly unstable. The number in the upper right hand corner of each
cell is the value of @ used to achieve the maximum obliquity, in arcseconds/year. The slider
at the bottom of each cell represents the final semi-major axis of Planet Nine, on a scale
from 400 - 900 AU. Three boxes in this plot show yellow or orange stability - this indicates
there was no perfectly stable run associated with that cell and the best alternative was
selected.
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Figure 4.9. Spin axis evolution for one of our simulations. Top: the evolution of |g| (top),
the ratio |a/g| (second), obliquity in degrees (third), and Planet Nine’s semi-major axis in
AU (bottom). The dotted red line in the topmost subfigure marks |a/g| = 1. Bottom: the
evolution of Uranus’ spin axis, as calculated with Equation 4.10 with a = 5.305 arcsec/yr.
A maximum obliquity of 103.46° is achieved, with Planet Nine’s final semi-major axis
at 445.4 AU. Note the resonance kicks when the ratio |a/g| crosses unity quickly, and
the subsequent resonance capture when the long-term average slowly crosses unity from
below.

We now take a closer look at one of the simulations. Figure 4.9 shows the
spin-axis evolution of one of our simulations, as well as the obliquity evolution
and Planet Nine’s migration trajectory. In this model, we used mg = 10 Mg,
eo = 0.5 and iy = 20°. Planet Nine’s final semi-major axis is 445.39, and we used
a = 5.305 arcsec/yr to achieve the maximum obliquity value of 103.49°. Here,
we see examples of resonance kicks in both directions (in the 10-30 Myr range)
before the spin axis is then captured into resonance and we see the characteristic
banana-like librations.

A natural question that arises from these simulations concerns our resonance
argument: namely, how Uranus achieves obliquities greater than 90°. From Equa-
tion 4.1, as the planet’s obliquity reaches 90° its axial precession rate tends to 0,
breaking the resonance (Rogoszinski & Hamilton, 2021). However, many of our
simulations show maximum obliquities greater than 90°. Quillen et al. (2018)
explored a different resonant argument including mean motion terms capable of
exciting obliquities above 90° - this resonant argument is insensitive to orbital in-
clination and requires multiple additional planets. We need not appeal to another
resonant argument, however - our results can be explained either via obliquity
kicks or the amplitude of libration during resonant capture. The simulation shown
in Figure 4.9 is a good illustration of both these cases, as it includes instances of
> 90° obliquity due to both an obliquity kick and during resonance itself. In Figure
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4.10, we have zoomed in on a sample of a kick (a), and a resonant libration (b).
In (a), note how after the rapid obliquity increase the spin axis fully circulates
about the planet, which shows that the spin-axis has not been captured into reso-
nance, and that a rapid kick was responsible for the increase in obliquity. Resonant
kicks, which do not satisfy the adiabatic criterion, face no comparable constraint
to Equation 4.1 and thus are capable of exciting obliquities beyond 90°. In (b),
the characteristic banana-like shape of libration is clearly visible - an indication
that resonance capture has occurred. Note that obliquities above 90° are achieved
only at the maximum amplitude of libration, indicating that the libration itself is
about a spin-axis position corresponding to an obliquity 6 < 90° hence, there is
no contradiction with Equation 4.1. The maximum excursions in ¢ and 6 from
equilibrium over one libration period are related, and can be expressed (Hamilton
& Ward, 2004):

AY = /tan 0/ siniAO (4.21)

4.5.2 Axial Precession Rate Discrepancy

While we have found that Planet Nine is capable of tilting Uranus up to 98°, there
is a caveat to our results - in all cases we require a value of a significantly higher
than the present day value. Uranus’ current day « is 0.045 arcsec/yr, two orders of
magnitude less than the smallest value used in our simulations. The mechanism
of @ enhancement has, in the past, been investigated as an attractive avenue for
tilting Uranus. Boué & Laskar (2010) proposed enhancing the Uranian « with an
additional moon, and were able to excite Uranus’ obliquity to present day values.
This moon, however, would have needed to be very large, with a mass of 0.01 My
and a semi-major axis of 50 Ry;. For reference Uranus’ most distant present-day
satellite is Oberon with a semi-major axis of 23 Ry, and its most massive satellite
is Titania with m = 4.06 x 10~ M. This hypothetical moon would raise Uranus’
precessional constant to @ = 10.58 arcsec/yr; however, its size and the fact that
it would need to be disposed of at some point raise significant issues with this
theory. Rogoszinski & Hamilton (2021), who proposed a circumplanetary disk to
enhance a, were able to tilt Uranus up to 70 degrees. In this scenario an impact
would still be necessary to reach Uranus’ present day obliquity - our simulations
have the advantage of requiring no impact at all.

The effect of a circumplanetary disk on a planet’s precession rate is well known.
For a circumplanetary disk with mass m,,, outer radius r.,, within the Laplace
radius of the planet, and surface density profile X,(r) = X, 0(r/R,)™ (Millholland
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Figure 4.10. A closer look at two instances where the obliquity of Uranus exceeds 90°.
The top plot shows the first 40 Myr of the obliquity time evolution from Figure 4.9. Both
bottom figures show 3-D scatterplots of Uranus’ spin axis in the designated time slices.
The red great circle respresents the projection of Uranus’ orbit plane onto the unit sphere,
and marks the point at which the obliquity of Uranus exceeds 90°. In (a), we see an
example of an obliquity kick, as the spin axis continues to circulate after the increase in
obliquity. In (b), the spin axis is shown in resonance, with the characteristic banana-like

libration clearly visible.
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These values are inserted into Equation 4.2 to calculate the corresponding Ura-
nian «a. It is thus useful to assess the feasibility of our results in the context of a
circumplanetary disk. Szulagyi et al. (2018) performed radiative hydrodynamic
simulations to estimate a reasonable initial mass for the Uranian circumplanetary
disk of ~ 7.4 x 10~* M. Using this value and taking a fiducial value for the cir-
cumplanetary disk radius of ., = 54 R based on the Laplace radius (Rogoszinski
& Hamilton, 2021), we arrive at a = 1.06 arcsec/yr. However, Szulagyi et al. (2018)
shows that the circumplanetary disk is not a closed system but rather is continu-
ously fed mass by the circumstellar disk at a rate of 2 X 107 My/yr. Given this,
a larger disk of m., = 2.9 x 103 My and e = 75 Ry can reasonably be assumed,
which is sufficient to give a = 6 arcsec/yr, which encompasses the range of all our
simulations. (Rogoszinski & Hamilton, 2021) argue that the traditional Laplace
radius of a planet is potentially enhanced by a factor of four in the presence of a
circumplanetary disk, so this larger required radius is reasonable and fits within
the potential Laplace radius of the planet. These values consider a constant surface
density disk - for a disk with surface density gradient y = 3/4 (Canup & Ward,
2002; Millholland & Batygin, 2019), a disk mass of m, = 4.1 X 107° My, is required.

Our brief circumplanetary disk analysis oversimplifies a deep and richly com-
plex field. Mamajek et al. (2012) estimate that the lifetime of a circumplantary disk
at Uranus’ present-day orbit is of order 10 Myr - a timeframe in modest tension
with the durations of our simulations. The possibility of dips in the circumplan-
etary disk’s surface density near the Laplace radius and detachment from the
ecliptic plane at high obliquities have also been noted by Rogoszinski & Hamilton
(2021) and Tremaine & Davis (2014), respectively - the latter scenario is of partic-
ular concern, as detachment from the ecliptic would shrink the rate of precession
and potentially break the resonance. Neither of these effects are considered in this
argument. Finally, we also do not consider the effect of Uranus accreting from
the circumplanetary disk over time - as Uranus accretes matter and gains angular
momentum, from Equation (4.2) all else being equal the axial precession rate «
will decrease (Rogoszinski & Hamilton, 2021). This works against the increase of
la/ gl - resonance capture will occur more slowly. If we are to account for accre-
tion from the circumplanetary disk, we would expect longer timescales to reach
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the obliquities in this paper, dependant on the rate of accretion from the disk.
We emphasize that we are agnostic with regards to the means of this necessary
precessional frequency enhancement and offer this discussion of the effect of cir-
cumplanetary disks to provide an order-of-magnitude feasibility analysis for one
of several viable options.

4.5.3 The Latest Planet Nine Parameters

We now present results from a set of simulations more closely analyzing the
parameter space predicted by Brown & Batygin (2021) (see Equation 4.16). Again,
we initialize each REBOUND simulations with the four outer planets, and Planet
Nine at 40 AU. We set 7, = 4.09 x 107 years and integrate for 10® years. This in
principle gives

as = ae'" = 460 AU, (4.23)

though again effects of the other bodies in the system make the true final semi-
major axis ultimately unpredictable. We ran 75 simulations with the values

my € {4.9 Mg, 6.2 Mg, 8.4 M)
es € {0.20,0.25,0.30, 0.35, 0.40} (4.24)
i € {11°,13°,16°,18°,21°).

Two of these simulations resulted in a body being ejected and were not considered
in our analysis. Of the remaining 73, 53 were stable, 8 were slightly unstable,
and 12 were significantly unstable. Figure 4.11 summarizes these results in the
same format as Figure 4.8. On the whole, maximum obliquities tend to be lower
than the more general case; nevertheless, 10/25 (or 40%) of the simulations reach
a maximum obliquity within 10% of Uranus’ present day value. This round of
simulations favors the most massive mgy = 8.4 Mg case.

4.5.4 Stochastic Scattering

As a brief caveat, note that simple exponential migration as we have modelled
does not necessarily represent the most physically accurate pathway for Planet
Nine’s current orbit. Rather, as a typical TNO is scattered outwards its perihelion
distance is coupled to Neptune and remains constant, while the semimajor axis
grows stochastically. For such a stochastic system, the dynamics of semimajor
axis evolution may be described by a conventional diffusion equation, where the
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Figure 4.11. Summary of results of our most stable simulations with the updated param-
eters from Brown & Batygin (2021). Quantities are as described in Figure 4.8, with the
exception of mass - a small central circle for mg = 4.9 Mg, a medium one for mg = 6.2 Mg,
and a large one for mg = 8.4 Mg.
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relevant physics are encapsulated by the diffusion coefficient (Batygin et al., 2021)

S mp VoMot exp[ 1(1)2]. (4.25)

Du - 5_7'( Mo _E ap

Here mp,ap are the mass and semimajor axis of the coupled planet (for a typical
TNO this is Neptune - in the case of Planet 9’s migration Saturn is more appropri-
ate) and g is the perihelion of Planet Nine.

As previously mentioned Bromley & Kenyon (2016); Li & Adams (2016); Eriks-
son et al. (2018), the issue of Planet 9’s migration is a difficult one. We have
performed a suite of numerical simulations as our own brief analysis of the issue.
Figure 4.12 shows the results of 400 REBOUND simulations integrated over 10
Myr. Each simulation is initialized as follows - the four giant planets in their
present-day configuration, and Planet 9 initialized at 40 AU with a perihelion of
25 AU (e9 = 0.375) and a random phase. No additional forces are imposed - the
resulting migration of Planet 9 is fully self-consistent and arises purely from per-
turbations from the other planets. The shaded region of the plot represents the
analytic solution of Batygin et al. (2021): in time  the expected scattering is + VD,t.
For the vast majority of simulations, the numeric results are in good agreement
with the analytic prediction. The large excursions from the norm are the cases
relevant to our study: these would be the pathways resulting in a Planet 9 which
would match present-day parameters. It is clear that an instability which would
both match Planet 9’s present-day configuration and occur on a timescale slow
enough to enter secular-spin orbit resonance is very difficult to reproduce. For
this reason, a fully self-consistent picture of Planet 9’s migration and its effect on
the Uranian spin axis is beyond the scope of this paper. We note that these large
excursions need not be in conflict with Uranus’ large present-day obliquity - we
can imagine a scenario where Planet 9 diffuses in the "standard" smooth migration
regime sufficiently long to excite Uranus’ obliquity, and then subsequently enters
the regime of large excursions to place it at its present-day location.

4.6 Discussion

We have computed an array of simulations spanning Planet Nine’s parameter
space that are capable of exciting Uranus’ obliquity to very high values. From the
set of simulations encompassing the most general Planet Nine parameter space
from Batygin et al. (2019), 81.2% are able to reach or exceed within 10% of the
present-day value of 98°. We also present an array of simulations more closely
examining the parameter space given by the most recent Markov Chain Monte
Carlo analysis (Brown & Batygin, 2021), and find that 40% of these simulations are
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Figure 4.12. 400 self-consistent REBOUND simulations of Planet 9’s dynamical migration.
Each line corresponds to one simulation - in each one, Planet 9 is initialized with a random
phase. The yellow-purple lines represent pathways which do not deviate far from the
expected analytic solution (in black), while the blue-green lines represent pathways which
show large excursions from the mean.

able to reach within 10% of Uranus’ present day obliquity. Given our results, we
conclude thatitis possible to tilt Uranus over via a spin-orbit resonance mechanism
driven by Planet Nine’s outward migration. The feasibility of this scenario is not
as straightforward. While we are, in several cases, able to tilt Uranus to 98°, we
require an axial precession rate @ two orders of magnitude greater than Uranus’
present day a = 0.045 arcsec/yr, and a few times larger than the disk sizes favored
by the hydrodynamic simulations of Szuldgyi et al. (2018). We also imposed
a smooth exponential migration scheme, with is not the most realistic migration
pathway for Planet 9. The feasibility of our results thus depends on the probability
of a more robust a enhancement, perhaps through larger circumplanetary disks
(Rogoszinski & Hamilton, 2021) or a primordial moon (Boué & Laskar, 2010) - more
work in assessing the potential for Uranus’ primordial precession rate, as well as
Planet 9’s precise migration history, will be vital in assessing our hypothesis.
This work only considers simulations which resulted in reproducing the Solar
System as it stands today, and heavily favored systems that exhibited a high degree
of stability. In fact, we did produce several unstable simulations which were able to
drive extremely high obliquities (up to a maximum of 134.16°), but were rejected
due to a high degree of instability or even the ejection of a planet. Of course
reproducing the Solar System’s current state is paramount, but instability does not
necessarily preclude this possibility. In fact, the Nice model (Tsiganis et al., 2005;
Gomes et al., 2005; Morbidelli et al., 2005) both reproduces the present day Solar
System and predicts migration in each of the giant planets, with some models
admitting the possibility of a planet’s ejection (Batygin et al., 2011). Vokrouhlicky
& Nesvorny (2015) have shown that the outward migration predicted by the Nice

103



model is consistent with Jupiter and Saturn’s present day axial tilts. Rogoszinski &
Hamilton (2021) have taken significant strides in investigating Uranus’ obliquity
evolution within the context of planetary migration (in their case, Neptune) -
turther work in placing Planet Nine’s migration in this greater framework has the
potential to yield interesting results, both in general and applied to Uranus’ axial
tilt.

The implication that planetary migration can induce high obliquity in other
planets of the system is an intriguing one. Most notably, the fact that we are able
to tilt Uranus to such an extent raises the question of Neptune’s 30° obliquity and
if Planet Nine’s migration could be responsible as well. More broadly, obliquity
plays an important role in assessing the viability of an exoplanet’s habitability,
and direct measurement has proven difficult (Shan & Li, 2018). With the recent
detection of a circumplanetary disk by Benisty et al. (2021), it seems feasible that
more robust estimates of exoplanet a values may be forthcoming.
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Chapter 5

Oblique Exorings Masquerading as a
Puffy Planet

"Vision is the art of seeing things invisible."
— Jonathan Swift

Adapted From:
Lu. T., Li, G., Cassese, B. & Lin, D. 2025, The Astrophysical Journal, Volume 980, Issue
1, pp.14
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Abstract

The super-puff HIP-41378 f represents a fascinating puzzle due to its anomalously
low density on a far-out orbit in contrast with other known super-puffs. In this
work, we explore the hypothesis that HIP-41378 fis not in fact a low-density planet,
but rather hosts an opaque ring system. We analyze the dynamical history of the
system, and show that convergent migration is necessary to explain the system’s
long-term stability. We then show that this same migration process plausibly
captures HIP-41378 f into spin-orbit resonance and excites the planetary obliquity
to high values. This tilts the surrounding ring and is a plausible explanation for the
large transit depth. In the end, we also briefly comment on the likelihood of other
super-puff planets being in high-obliquity states. We show that the existence of a
tilted extensive ring around a high obliquity planet can serve as an explanation for
puffy planets, particularly in multi-planetary systems at far distances from their
host stars.

5.1 Introduction

In recent years, a class of planets with extremely low densities has emerged.
These planets, the so-called "super-puffs" (Lee & Chiang, 2016), have masses a few
times greater than Earth’s and radii in excess of Neptune’s, resulting in densities
of p < 0.3 g/cm_3. Standard thermal evolution models (e.g. Rogers et al., 2011;
Batygin & Stevenson, 2013; Lopez & Fortney, 2014) have been seriously challenged
to reproduce these super-puffs, often requiring envelope mass fractions well in
excess of 20% which lies in tension with standard core accretion models of planet
formation.

A number of explanations have been put forth to explain these anomalous
planets. Lee & Chiang (2016) posit that super-puffs form in the outskirts of the
circumstellar disk where it is easier to accrete large amounts of material, and
migrated to their present-day locations. Tidal inflation is another possibility —
Millholland (2019); Millholland et al. (2020) demonstrated that tidal heating is
sufficient to inflate planets with more standard envelope mass-fractions of 1 —-10%.
The question of planetary inflation is perhaps best studied in hot Jupiters, where
the hot Jupiter radius anomaly remains an open question (e.g. Fortney et al., 2021).
While the exact mechanism responsible for this inflation is uncertain (e.g. Fabrycky
et al., 2007; Batygin & Stevenson, 2010; Leconte et al., 2010; Tremblin et al., 2017),
there is a clear trend linking radius inflation and effective temperature (Laughlin
et al., 2011) which indicates inflation relies on the super-puff in question orbiting
close-in to its host star. Most discovered super-puffs do indeed have the requisite
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Planet Mass (Mg) Radius (Rg) p (g/em®)  Orbital Period (days)

b 6.89 £0.88 2.595+0.036 2.17+028 1557208 +2x10°
c 44+1.1 2727+0.060 1.19+0.30 31.70603 +6 x 10
d <46 3.54 £0.06 < 0.56 278.3618 +5x 1074
e 12+5 492+0.09 0.55+0.23 369 +10

f 12+3 92+0.1 0.09 +£0.023 542.07975+1.4x 1074

Table 5.1. Relevant physical and orbital parameters of the planets in the HIP-41378 f
system, as reported in Santerne et al. (2019).

close-in orbit. However, this trend was broken with the discovery of the HIP-
41378 system by Vanderburg et al. (2016). The outermost planet, HIP-41378 f, was
found to be a super-puff by Santerne et al. (2019), and this presents an intriguing
mystery. HIP-41378 f exhibits an extremely low density of p ~ 0.09 g/cm™ yet
orbits its host star with a period of 542 days, well beyond the orbit of Earth. The
relevant physical and orbital parameters of the system are provided in Table 5.1.
Belkovski et al. (2022) showed that no reasonable interior structure consistent with
standard formation theory is capable of reproducing the anomalous density of
HIP-41378 f, and conclude that the planet’s low density is incompatible with the
traditional methods of inflation.

Given the difficulty of creating such a low-density planet far from its host star,
an appealing explanation is that the planet is not actually an extremely low density
planet and only appears to be due to some obscuring effect masquerading as a
large radius in the transit lightcurve. One explanation is atmospheric hazes and a
dusty outflowing atmosphere (Wang & Dai, 2019). The most popular hypothesis,
which we explore in this work, is the existence of an opaque planetary ring system
around the planet (Akinsanmi et al., 2020). While there has to date not been a direct
detection of a exoplanetary ring system, there is some evidence to support this
hypothesis — Ohno & Fortney (2022) demonstrate that the presence of planetary
rings or hazes results in a featureless transmission spectrum, which was observed
by Alam et al. (2022). They also conclude that planetary rings are long-term stable
around planets only if T.q < 300 K, which rules out the majority of super-puffs but
is consistent with HIP-41378 f’s equilibrium temperature of 294 K.

A crucial piece of the exoring hypothesis is planetary obliquity — for a ring
system to be visible in the transit lightcurve the planet must have a nonzero plan-
etary obliquity, lest the rings be viewed edge-on and therefore contribute nothing
to the transit depth (e.g. Barnes & Fortney, 2004). Saillenfest et al. (2023) pro-
posed a formation mechanism involving a migrating exomoon which consistently
explains the planetary obliquity and formation of the ring system. Harada et al.
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(2023) showed that such large moons are tidally and dynamically stable around
HIP-41378 £. In this work we explore an alternative dynamical history of the HIP-
41378 system. We show that the system was likely delivered to its present-day
orbital configuration via convergent migration, and that excited planetary oblig-
uity sufficient to reproduce the observed transit depth is a natural consequence
of this migration. The structure of this paper is as follows. In Section 5.2 we dis-
cuss the architecture of the HIP-41378 system, and show that it is unstable unless
convergent migration occurred in its past. In Section 5.3 we describe the extent
and configuration of a realistic planetary ring system around HIP-41378 f, and
the resulting impact on the transit lightcurve as a function of ring composition
and orientation. In Section 5.4 we provide a brief background on the mechanism
of secular spin-orbit resonance, and in Section 5.5 we use N-body simulations to
demonstrate that such a process could have reasonably excited the obliquity of
HIP-41378 f. We explore the possibility of the other super-puffs being in high-
obliquity states in Section 5.6. We conclude in Section 5.7.

5.2 Architecture and Stability of the HIP-41378 System

HIP-41378 is a roughly solar-mass F-type star which hosts five transiting planets.
The relevant orbital elements and physical parameters are given by Santerne et al.
(2019) and reproduced in Table 5.1. We note that recently Sulis et al. (2024) targeted
HIP-41378 d with CHEOPS during the predicted transit timing and did not detect
a transit, which casts some doubt on the original orbital parameters put forth by
Santerne et al. (2019). They propose either a misidentified period or a large transit-
timing variation to explain the missing transit. We assume the second explanation
for now, and proceed with the originally determined parameters.

Most significantly, the outer three planets are very closely packed. The mutual
separation of multi-planet systems in commonly parameterized by the mutual Hill
radius:

4t aiq (mp+mig 173
2 ( 3M. )
The mutual separations between planets d, ¢ and planets ¢, f are 7.6 Ry and
9.3 Ry, respectively. Systems this compact are typically dynamically unstable on
timescales of around 107 orbits, or a few Myr (e.g. Obertas et al., 2017; Gillon et al.,
2017). Given the system age of 3.1 £ 0.6 Gyr (Santerne et al., 2019) it is extremely
unlikely that we are observing the system in this small stable window. Indeed, we
will confirm with N-body integrations that the system is naively unstable on short
timescales.

Ru (5.1)
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One way to stabilize these compact systems is to initialize systems in reso-
nant configurations, which can increase the stability time by orders of magnitude
(Obertas et al., 2017). In the HIP-41378 system, planets b and c lie close to a 2:1
MMR while the outer three planets lie in or near a 4:3 — 3:2 resonant chain. The
fact that we are able to observe HIP-41378 in its present-day configuration points
the system being in a resonant architecture. While the proportion of orbital con-
tigurations consistent with a resonance are a very small fraction of the parameter
space encompassed by the observational constraints, Tamayo et al. (2017) showed
that slow convergent migration preferentially places planets in these resonant con-
figurations. This process of convergent migration has been invoked to justify the
long-term stability of resonant chains such as TRAPPIST-1 (Tamayo et al., 2017),
TOI-1136 (Dai et al., 2023) and HD 110067 (Lammers & Winn, 2024a).

5.2.1 Formation via Convergent Migration

We use a similar stability analysis to argue that the outer three planets in the HIP-
41378 system are indeed in a 4:3—3:2 resonant chain that was created via convergent
migration. We first show that systems not in resonance are overwhelmingly un-
stable. To do so, we have run a suite of 500 N-body simulations. We consider
only the outer three planets d, e and f — these are the planets most dynamically
relevant to planet f, and the distance between planets c and d render the inner two
planets dynamically irrelevant to the stability of the outer three. Removing the
inner two planets allows us to use a significantly larger timestep in our simulations
at great computational gain. We use the WHFAST (Rein & Tamayo, 2015) integrator
in REBOUND (Rein & Liu, 2012). We draw all relevant orbital parameters from the
posterior distributions given in Table 5.1, using m,; = 4.6 Mg. We select a timestep
equal to 1/15th of planet d’s orbital period, and integrate for 10® years. Integrations
were halted if the Hill radii of any pair of planets overlapped, a common metric for
a system’s instability (e.g. Obertas et al., 2017; Tamayo et al., 2020b). Our results
are shown in the blue curve in Figure 5.1. We see that the vast majority of systems
experience rapid instability, with approximately 90% of systems going unstable
within 1 Myr. Only 7 systems are stable over the full 10° years.

Next, we explore initial conditions consistent with migration into resonance.
We follow the prescription of Tamayo et al. (2017), which has been widely adopted
in the literature (e.g. Siegel & Fabrycky, 2021; MacDonald et al., 2022; Dai et al.,
2023; Lammers & Winn, 2024a). Exploiting the scale-free nature of Newtonian
gravity, we set the semimajor axis of planet d to a4 = 1 AU. We initialize planets
d, e and f on circular orbits, with consecutive planets initialized 2% wide of their
present-day mean-motion resonance. The planetary masses and inclinations are
randomly drawn as in the previous runs. We modelled convergent migration
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Figure 5.1. Cumulative distribution of unstable configurations of the HIP-41378 f system
as a function of time. In the blue are initial configurations drawn from the posteriors
reported by Santerne et al. (2019) and reproduced in Table 5.1. In the red are parameters
consistent with resonance via convergent migration. We see that the simulations consistent
with migration into resonance are overwhelmingly more stable than the naive posteriors.
Given the age of the system, we consider this strong evidence that the HIP-41378 system
migrated into a resonant chain.

using the modify_orbits_forces (Kostov et al., 2016b; Papaloizou & Larwood,
2000) prescription in REBOUNDx (Tamayo et al., 2020a) as follows. Exponential
semimajor axis damping was applied to planet f only with a timescale 7, =
5 % 10°P,. Eccentricity damping was applied to all planets with a timescale of
7, = 7,/K, where K was drawn from a log-uniform distribution € {10,10%}. Each
simulation was integrated for one semimajor axis damping timescale 7,, upon
which damping forces were adiabatically removed over a timescale of 57,. We
then discard any simulations that fail to lock into the desired 4:3—3:2 resonant
chain. The successful simulations are rescaled such that Py = 278.36 days, the
present-day orbital period of planet d, and integrated for 10 more years. At any
point, if the mutual separation between any pair of planets is less than the hill
radius of the innermost planet or if any planet’s semimajor axis exceeds 3 AU, we
consider the system to be unstable and halt the simulation.

We ran 500 migration simulations. 51 went unstable during the migration
phase, and 1 failed to lock into the correct resonant chain. The remaining 448
simulations are shown in the red line in Figure 5.1. The initial conditions consistent
with migration into the resonant chain are significantly more stable — 97% are
stable over the full 10® years. Thus, the present-day stability of the system is
strong evidence that the HIP-41378 system experienced convergent migration in
its primordial history to arrive at the present-day resonant chain.
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5.3 Transiting Planetary Rings

In this section we discuss how an opaque planetary ring system imprints on
the transit lightcurve, as a function of its orientation and extent. We show that a
realistic ring system around HIP-41378 f is capable of reproducing its transit depth,
and in many cases can be detected in transit ingress/egress with the capabilities of
JWST.

5.3.1 Ring Extent

The outer extent of a planetary ring system is governed by the Roche Radius
(Murray & Dermott, 2000; Schlichting & Chang, 2011; Piro & Vissapragada, 2020):

3m, |2
RRroche = 2.45 (5.2)
(47"Pring )

beyond this radius, debris which would make up a ring system will instead coa-
lesce into a moon. The primary degree of freedom in this expression is pring, the
density of the ring particles. Assuming zero albedo and full heat redistribution the
equilibrium temperature of HIP-41378 £ is 294 K (Santerne et al., 2019), which is in
excess of the melting point of water ice. The rings around HIP-41378 £ therefore
must be rocky in composition.

Estimating a minimum reasonable density for rocky ring particles thus provides
a corresponding maximum ring extent. To inform this lower limit we use the
work of Babadzhanov & Kokhirova (2009), who find p ~ 0.4 g/cm?® for the most
porous meteorites. Plugging in the most optimistic mass estimate for HIP-41378 {
m¢ = 15 Mg and this fiducial lower limit into Equation (5.2), we see that HIP-41378
f is in principle capable of hosting rings that extend over 14 Rg, well exceeding the
implied R¢ = 9.2 Rg from the transit observations. Thus, it is in principle possible
for HIP-41378 £ to support a ring system large enough to reproduce the anomalous
transit depth observed by Santerne et al. (2019). This is of course assuming the
lowest possible ring particle density and the most optimistic ring configuration of
directly face-on.

5.3.2 Ring Orientation

We consider now how the orientation of the ring affects the transit depth. The
orbital dynamics of planetary satellites/ring particles is governed by the interplay
between the solar tide and the oblateness of the host planet. In the presence of
dissipation, satellites, ring particles and circumplanetary disks will damp to the
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Laplace surface, with characteristic length (Tremaine et al., 2009):
My
M
where | is the quadrupole gravitational harmonic, R, the planet’s radius, a,,¢,
the semimajor axis and eccentricity of the planet’s orbit around the host star, and
M., the mass of the host star. The orbital inclination of a satellite i, or the angle

between the satellite’s orbit normal and the planet’s spin axis, is given (Tremaine
et al., 2009):

R} = LR (1 - ¢)>? (5.3)

tan2i= ——— (5.4)

where g is the semimajor axis of the satellite’s orbit about the planet, and 0 is the
planetary obliquity defined as the misalignment between the planet’s orbit normal
and its spin axis. Inspection of Equation (5.4) reveals that broadly speaking, the
dynamics of a satellite or ring particle orbiting with 2 < R; will be dominated by
the oblateness of the planet and be coupled to the planet’s spin axis. Conversely,
the dynamics of a satellite orbiting with 2 > R; is dominated by contributions
from the host star and will be coupled to the planet’s orbital axis. This results in
a warped profile for disks that extend past R;. Dynamics of the Laplace surface
have been studied in depth by many authors (e.g. Zanazzi & Lai, 2017; Speedie &
Zanazzi, 2020; Farhat & Touma, 2021).

These dynamics are significant for close-in planets, but not HIP-41378 £. For all
reasonable values of [, R, and pring, Rr 3> Rroche, meaning the disk does not extend
to the Laplace radius. Hence, to a very good approximation a putative ring system
around HIP-41378 f would be completely coupled to its equator. The orientation
of the ring system is thus defined completely by the planet’s spin vector. The unit
spin vector of the planet can be described with two angles: the obliquity 0 defined
previously, and the phase angle ¢ defined as the projection between the planet’s
spin axis projected onto the plane of the orbit, and the ascending node of the orbit.

5.3.3 Transit Depth

Consider the standard coordinate system where the z-axis points along the line of
sight to the system, and the x-axis is aligned with the planet’s ascending node. The
area circumscribed by the outer edge of the ring seen in this frame is its projected
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Figure 5.2. Fraction of ¢ ring orientations capable of reproducing the transit depth of
HIP-41378 f as a function of planetary obliquity and ring particle density. The white area
are areas of parameter space where rings cannot reproduce the transit depth observed
even with the most optimistic configuration with ¢ = 0.

area in the xy plane, and is given:

_ P2 :
Ating = Ry peTTCOS P sin 0

3m, 1/312 .
= (245 T1COs ¢ sin O
417-(pring

(5.5)

For a given 0 and ¢, the transit extent of the ring varies inversely with ring
particle density. Figure 5.2 shows, for a given planetary obliquity and ring particle
density, the ring orientation necessary to reproduce the observed transit depth of
HIP-41378 f. The white regions represent areas of parameter space where even
for the most optimistic face-on configuration, rings are insufficient. The darkest
areas of the colored contours represent the regime where a nearly face-on ring is
required, and this orientation requirement is relaxed for lighter colors. We see that
there is a plentiful region of parameter space where rings indeed are sufficient to
reproduce the transit depth.

5.3.4 Detection in ingress/egress

Detection of planetary rings is in principle observable through various avenues,
but mostly notably in artifacts during transit ingress/egress that differ from a
purely spherical planet (Barnes & Fortney, 2004; Aizawa et al., 2018; Akinsanmi
et al., 2018; Piro & Vissapragada, 2020). This is very similar to the procedure used
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Figure 5.3. Comparison of transit lightcurves of a flat planet and a planet with an inclined
ring system with identical transit depths. The ring system is modelled with 6 = 45°,¢ =
20°, and Rgoche = 11.29 Rg. We see that there are large deviations in ingress/egress in which
a ringed system can be differentiated from a spherical planet.

to measure planetary oblateness (Seager & Hui, 2002; Barnes & Fortney, 2003;
Zhu et al., 2014; Akinsanmi et al., 2024; Cassese et al., 2024a). While to date no
planetary ring systems have been confirmed via this method, with the advent of
JWST these measurements are imminently possible. In this subsection, we briefly
demonstrate the feasibility of this method.

Figure 5.3 demonstrates the feasibility of detecting realistic ring systems around
HIP-41378 f via transit ingress/egress. We use squishyplanet (Cassese et al.,
2024a) to generate three simple transit lightcurves, which are shown in the top
panel. All three lightcurves are generated assuming a circular orbit at a = 1.37
AU and quadratic limb darkening parameters u; = 0.0678,u, = 0.118. These
system-specific coefficients were derived using the ExoTIC-LD package (Grant &
Wakeford, 2024), the stellar atmosphere grids from Magic et al. (2015), and assume
observations are collected in the JWST NIRSpec’s G395H/F290LP bandpass. The
planets are assumed to transit with an impact parameter of b = 0. We simulate a
perfectly spherical planet with the implied measured radius of r; = 9.2 Rg, (labelled
"Puffy"), as well as a ring system with 0 = 45°, ¢ = 20° and Rroche = 11.29 Rg
(labelled "Ringed") which requires a ring particle density of p = 0.68 g/cm®. The
simulated ring system and planet have the same projected area, and at the scale of
the first subplot the two curves appear identical. Finally, we also simulate a more
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realistic spherical HIP-41378 f with a density of 1 g/cm® — this corresponds to a
radius of 4.04 Rg, and is labelled "Ringless". Note the large enhancement in transit
depth achieved by a realistic ring system. The lower panel shows the difference
in flux between the "Ringed" lightcurve and the "Puffy" lightcurve in ppm. Clear
deviations in transit ingress/egress are visible. A simple estimate using PandExo
(Batalha et al., 2017) suggests that JWST’s NIRSpec instrument, while operating
in its BOTS mode with the G395H grating + F290LP filter, is capable measuring
the white light flux with a precision of < 20 ppm/hour, which is in principle more
than sufficient to detect this deviation and hence differentiate a ringed planet from
a puffy planet with equivalent surface area.

We emphasize that these simple comparisons are designed only to demonstrate
the feasibility of detecting ring systems. More detailed analysis exists elsewhere
in the literature, accounting for factors such as scattered and reflected light as well
(e.g. Barnes & Fortney, 2004; Sucerquia et al., 2020; Zuluaga et al., 2022). Our
model does not account for these factors, nor the gap between the inner edge of
the ring system and the outline of the planet. As the primary purpose of this work
is to investigate the dynamics of the system, we do not extensively investigate the
observational consequences.

5.4 Secular Spin-Orbit Resonance

Secular spin-orbit resonance is a well-studied phenomenon that has been shown
to be a plausible origin for the nonzero obliquities of solar system bodies and
exoplanets alike. In brief, a planet’s obliquity (the angle between its spin axis and
orbit normal) may be excited to high values if there is a near match between the
precession rates of its spin axis and orbit normal.

Many examples of spin-orbit resonance are present in the solar system. Our
moon is perhaps the most prominent example - its 6.68° obliquity arises as a con-
sequence of a near match between its orbital and spin precession rates (Colombo,
1966; Peale, 1969; Touma & Wisdom, 1998). In more complex systems such as the
solar system, this coupling can occur between the the precession of the spin axis
and any of the fundamental frequencies contributing to the nodal precession of the
orbit. This has implications for the chaotic obliquity variations of the inner planets
(Ward, 1973; Touma & Wisdom, 1993; Laskar & Robutel, 1993; Zeebe, 2022; Zeebe
& Lantink, 2024) as well as the 3° degree obliquity of Jupiter (Ward & Canup, 2006)
and the large 89° degree obliquity of Uranus (Boué & Laskar, 2010; Millholland &
Batygin, 2019; Rogoszinski & Hamilton, 2020, 2021; Lu & Laughlin, 2022; Saillen-
fest et al., 2022). The most well-studied and accepted case of spin-orbit resonance
in our solar system is Saturn, whose 26° obliquity is almost certainly due to a near
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match with a nodal frequency dominated by Neptune (Ward & Hamilton, 2004;
Hamilton & Ward, 2004; Saillenfest et al., 2021a,b; Wisdom et al., 2022).

Naturally exoplanet obliquities are significantly more difficult to detect, though
progress has been made on this front - see Bryan et al. (2018); Bryan et al. (2020,
2021); Poon et al. (2024a,b). However, there exists a wealth of theoretical literature
suggesting that significant exoplanetary obliquities may be common via spin-
orbit resonances (e.g. Shan & Li, 2018; Millholland & Batygin, 2019; Quarles et al.,
2019; Su & Lai, 2020; Li, 2021; Su & Lai, 2022; Su & Lai, 2022a; Chen et al., 2023;
Millholland et al., 2024). In this section, we will describe in detail the theory behind
secular spin-orbit resonance.

5.4.1 Spin Axis Precession

In the presence of torques from the host star, a planet’s spin axis will precess about
its orbit normal. The period of precession is given (Goldreich, 1965):
2

T, = 5.6
acos B (5-6)

where 0 is the planetary obliquity, and is defined by the angle between the planet’s
orbit normal and its spin axis. The precession rate is defined by «, which is
primarily a function of the physical parameters the characterize the planet (Ward
& Hamilton, 2004; Millholland & Batygin, 2019)

2 R.\°
_mth 1M (_p) EQ (5.7)

“T2acT2m\a)C
where M., m, are the masses of the star and planet respectively, n is the orbital
mean motion, () the planet’s spin frequency, |, the quadrupole strength of the
gravitational field, R, the planetary radius, a the semimajor axis, k, the tidal
Love number, and C the moment of inertia normalized by m,R}. This precession
frequency can be enhanced significantly by the presence of a circumplanetary disk
(Millholland & Batygin, 2019) or a moon (Saillenfest et al., 2022; Wisdom et al.,
2022).

5.4.2 Nodal Precession

In the presence of torques from the other planets in the system, the planet’s orbit
normal will precess about the total angular momentum of the system, or the
invariant plane normal. The period of nodal precession is given by

_271

- (5.8)

8
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where ¢ is the rate of change of the planet’s longitude of ascending node. The
dynamics governing the rate of nodal precession in a multi-planet system is quite
complex and in most cases analysis is performed numerically. However, first-
order conclusions and intuition can be drawn from Laplace-Lagrange secular
theory (Lagrange, 1778; Laplace, 1784; Laskar, 2013; Murray & Dermott, 2000). At
this level of approximation, the time evolution of the inclination I and ascending
node Q) of a planet can be calculated as sum of sinuisoidal contributions (Murray
& Dermott, 2000; Ward & Hamilton, 2004):

s I
sin > sin Q) = Ej > sin(g;t + 0;)
I (5.9)
inLcosQ = Z ! o
sin 7 cos () = : > cos(git + ;)

where [}, ¢;,0; are secular amplitudes, frequencies and phases that depend on the
orbital architecture of the system. In a given system there may be many such terms,
but for a system with N planets there are typically N large-amplitude terms that
end up being significant to the dynamics of the system, with each term dominated
— but not necessarily solely associated with — one of the planets. Mean motion
resonances complicate this picture slightly, but an analytic solution is in principle
still possible (e.g. Wisdom, 1985; Malhotra et al., 1989; Hadden & Tamayo, 2022).
However, in practice these frequencies are often found numerically (e.g. Shan &
Li, 2018; Millholland et al., 2024).

5.4.3 Cassini States and Resonance Capture

Cassini States are equilibrium configurations of the spin axis (Colombo, 1966;
Peale, 1969; Ward & Hamilton, 2004; Fabrycky et al., 2007; Su & Lai, 2020). They
correspond to configurations in which the system’s invariant plane normal k, the
planet’s orbit normal 71, and the planet’s spin axis Q are coplanar, and Q and
fi precess about k at the same rate. Hence, in a coordinate frame centered on 7
rotating with angular velocity g the Cassini States appear stationary. Defining the
planetary obliquity O as the angle between 7 and Q, the Cassini State obliquities
may be expressed as a function of the ratio a/g:

a/gcosOsinO +sin(0—1) =0 (5.10)

where Iis the orbital inclination relative to the invariant plane, or the angle between
i1 and k. There are in general 4 equilibrium solutions, but only Cassini State 2 is
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characterized by high 0, which is seen for a/g > 1.

Through linearization of the equations of motion that govern the spin axis (e.g.
Ward, 1974, 1979), it can be shown that if a cos 0 ~ |g;| for some i, the amplitude
of the forcing associated with this frequency grows very large and the dynamics
of the spin axis are well-approximated by setting ¢ ~ ¢;. Hence, there exists a
high-obliquity Cassini state equilibrium if there is a near match between a cos 0
and any of the fundamental frequencies g;.

Gaseous planets such as HIP-41378 f are naively expected to form with 6 ~ 0
as they accrete gas from the circumstellar disk . Hence, the existence of a high-
obliquity equilibrium state is insufficient — there must be a mechanism to reach
it. Capture into spin-orbit resonance is one such mechanism, and occurs when
the ratio a/g evolves through unity from below. If this evolution is slow enough
to satisfy the adiabatic criterion — that is, if the timescale of evolution is slow in
comparison to the timescale of the spin-axis libration — phase-space volume will
be conserved as the ratio a/g evolves. Hence, a trajectory that starts near Cassini
State 2 will remain close to it as the equilibrium point grows in obliquity, and hence
the spin vector itself will be excited to high obliquity. This slow change in a/g
can be plausibly generated by both evolution in a (e.g. Rogoszinski & Hamilton,
2020; Saillenfest et al., 2020, 2021b,a; Wisdom et al., 2022; Saillenfest et al., 2023) or
g (e.g. Millholland & Laughlin, 2019; Millholland & Batygin, 2019; Lu & Laughlin,
2022; Millholland et al., 2024).

5.5 The Obliquity of HIP-41378f

For a high-obliquity Cassini State 2 to exist for HIP 41378 £, there must be a near
match between the spin axis precession rate @ and one of the components of the
nodal recession g;. In this section, we first assess the likelihood of HIP-41378f
presently being in a high-obliquity Cassini State. We then present a migration-
driven resonance capture scenario that can plausibly excite the planetary obliquity
of HIP-41378 f, and verify with N-body simulations.

5.5.1 Spin Equilibria

We first obtain the g; frequencies of the present-day system numerically, following
the procedure enumerated in Shan & Li (2018). First we construct a time-series
of the orbital inclination modulated by the longitude of ascending node of planet
f, i(t)e V=190 The initial conditions of these simulations are drawn from the set
of configurations consistent with convergent migration, from Section 5.2.1. For
each simulation we integrate for 3 x 10° years, recording outputs every 10 years.
We then perform a Fourier Transform on the resulting time-series data, which is
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displayed in black dots in the top panel of Figure 5.4. While in principle the Fourier
spectrum depends on the precise orbital configuration of the system and as such
will be different for each draw of the system due to the observational uncertainties,
in practice these uncertainties are small enough that they do not significantly affect
the power spectrum. We have marked each peak of the Fourier spectrum which
exceeds an amplitude of unity with red Xs. These are taken to be the fundamental
g frequencies of the present-day system. We observe 3 high-amplitude peaks.

While the nodal recession can be calculated from precise constraints on the
orbital architecture, many of the physical parameters necessary to calculate the
spin axis precession rate are entirely unconstrained. Thus we use the solar system
bodies as fiducial estimates for a, which are plotted in the dashed colored lines
in Figure 5.4. The blue and golden dashed lines represent « for an HIP-41378 f at
the present-day semimajor axis of af = 1.37 AU and C = 0.25 with Neptune-like
and Saturn-like rotation and J,. We see that there is a near-match with highest
amplitude peak of the Fourier spectrum with gpeak = 3.8 X 107* rad/year for the
Saturn-like case, implying an high-obliquity spin equilibrium exists if HIP-41378
f is around or slightly more oblate than Saturn (the most oblate planet in our
solar system). To achieve a near-match with the other two other fundamental
frequencies unrealistic values of a are required. For the low-frequency peak we
require a J, equal to 1/5th of Neptune’s while a match with the high-frequency
peak requires a |, equal to 3x Saturn’s.

5.5.2 Migration-Driven Frequency Evolution

We next explore the possibility of migration-driven evolution of the precession
rates a and g exciting a spin-orbit resonance. We again emphasize the need for
the ratio a/g to evolve through unity from below. The bottom subplot of Figure
5.4 depicts an example of the evolution of precession rates under the influence
of planetary migration. Due to the nature of the Fourier transformation used
to analyze the g frequencies it is impossible to fully track the time-evolution
of the g power spectrum through the course of migration. Instead, we take a
pre-migration snapshot and a post-migration snapshot of the power spectrum,
which is sufficient to show the general evolution trend. The post-migration power
spectrum is shown in the black dots, and is identical to the upper subplot. The
pre-migration power spectrum is plotted in gray, and is analyzed from a system
where planets b and c are initialized in their present-day orbits, planetd ataq = 2.9
AU (approximately 3.3x its present-day semimajor axis), and planets e and f two
percent wide of their respective present-day mean-motion resonances. Planets d,
e and f are initialized with circular orbits and mutual inclinations drawn from a
Rayleigh distribution centered on 0.5°. In contrast to the upper subplot, the x-axis
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Figure 5.4. Analysis of precession rates in the HIP-41378 system, showing that capture
into secular spin-orbit resonance is possible for reasonable parameters. The upper subplot
shows the present-day power spectrum of the nodal recession of HIP-41378 f in black,
with the peaks marked with red Xs. The spin-axis precession rates of a Neptune-like
and Saturn-like planet are plotted in the vertical dashed lines, and we see that there is a
near-match between the highest-amplitude peak of the nodal recession power spectrum
and the Saturn-like spin axis precession rate. The lower panel shows also shows a power
spectrum of a fiducial pre-migration system in the gray dots, as well as the spin-axis
precession of a Saturn-like planet with slightly enhanced oblateness both pre- and post-
migration in the purple vertical dashed lines. We see that |a/g| evolves from below unity
pre-migration to above post-migration, satisfying the criteria for resonance capture and
subsequent high planetary obliquity.
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is now a linear scale and we zoom in near the location of the highest-amplitude
peaks. The peak we consider has been marked with a red x. The x-axis has
also been relabelled for convenience — the bottom labels are in units of the post-
migration peak gpost = 3.8 X 107* rad/year, and the upper labels are in units of the
pre-migration peak gpre = 9.3 X 107°. We see that convergent migration acts to
shift the entire power spectrum towards the right, corresponding to faster nodal
precession.

We also analyze the evolution of the spin axis precession rate. We consider a
planet with the best-fit value for HIP-41378 f’s mass m; = 12mg, dimensionless mo-
ment of inertia C = 0.25. We consider a relatively oblate planet with Saturn-like
spin and slightly enhanced |, = 1.3 Jsatumn- This value is selected as a reason-
able illustrative example as to achieve |apost/gl > 1. The pre-migration spin axis
precession rate is plotted with a dotted light purple line, and the post-migration
precession rate with a dotted dark purple line. Inward migration similarly pushes
the spin axis precession rate to faster values. Due to the strong dependence on
semimajor axis evident from inspection of Equation (5.7), the increase in preces-
sion rate is even stronger than the corresponding increase in nodal precession rate.
Hence, we see that |apre/gprel < 1 and |apost/gpostl > 1, satisfying the resonance
capture criteria so long as migration is slow enough.

We conclude this subsection by arguing that assuming a reasonable set of
physical parameters for HIP-41378 £, convergent migration is capable of capturing
the planet into secular spin-orbit resonance and exciting its planetary obliquity.
Hence, migration serves to simultaneously stabilize the system over Gyr timescales
as discussed in Section 5.2.1, and drive the precession frequency evolution neces-
sary to generate the high planetary obliquity needed to reproduce HIP-41378 f’s
anomalous transit depth with a ring system.

5.5.3 Migration Simulations

We now present a suite of 300 full N-body simulations investigating a high oblig-
uity for HIP 41378 f caused by a spin-orbit resonance generated from primordial
convergent migration, accounting for migration and self-consistent spin axis evo-
lution. As mentioned in Section 5.2.1, the present-day stability of the system
heavily implies primordial convergent migration into a resonant chain. We will
show in this section that this migration serves as a natural mechanism to evolve
the ratio a/g to induce spin-orbit resonance and excite a high obliquity.

The setup of our simulations closely follows that of Millholland et al. (2024).
We initialize the systems in the pre-migration configurations enumerated in Sec-
tion 5.5.1. We use the WHFAST integrator (Rein & Tamayo, 2015) and use a timestep
equal to 1/10th of the orbital period of the innermost planet. We simulated conver-
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gent migration with themodify_orbits_forces prescription in REBOUNDx (Tamayo
et al., 2020a). In contrast to our stability simulations, we adopt a more realistic
prescription used by Delisle (2017); Millholland et al. (2024). In this prescription,
all three outer planets experience semimajor axis damping. The timescale of this
damping for the ith planet is given

Tai = Tod (5.11)

where 79 = 1 x 10° and g = —1.7. This timescale was selected by slowly increasing
until the migration was slow enough to reliably capture planet f into spin-orbit
resonance — as long as the migration timescale exceeds the spin-axis libration
timescale the specific choice of migration timescale does not significantly impact
our simulations. All three planets also experience eccentricity damping on a
timescale 7,; = 7,;/100. The simulation is integrated until planet d reaches its
present-day semimajor axis of a; = 0.88 AU. At this point, all migration forces are
turned off and we integrate for an additional 3 Myr before halting the simulation.

We account for self-consistent spin and dynamical evolution using the pre-
scription of Eggleton et al. (1998) and Mardling & Lin (2002), implemented by Lu
et al. (2023) in REBOUNDx. We endow planet f with structure and approximate the
other four planets as point particles. The relevant additional parameters needed
to describe the spin evolution of the planet are the initial direction and magnitude
of the spin axis ), the radius of the planet ¢, the tidal Love number k,, and the di-
mensionless moment of inertia C. Note that tides are not expected to be important
for the spin-axis evolution of this planet, so we do not include their effects in the
interest of minimizing computation time. We vary the density of HIP-41378 f from
ps €10.7,1.5} g/cm® and ], € {4.75 x 107%,7.86 X 107"} — for comparison, Saturn’s
moment is 1.65 X 1072, so our simulations range from 30% to 48x Saturn’s |, mo-
ment. The upper bound is unphysically high —a more physically reasonable upper
bound would be |, ~ 0.3 (e.g. Wahl et al., 2021). We choose this unrealistically high
upper bound to show that even for planets with extremely quick spin precession
rates the spin-orbit resonance can be entered. This will be important for Section
5.5.4, when we discuss sources of a (e.g., due to a massive moon) enhancement that
can mimic an unphysically oblate planet. These initial conditions are somewhat
arbitrarily selected, but are designed to more than encompass a range of realistic
physical parameters that would result in a near-match with the high-amplitude
frequency peak identified in Section 5.5.1.

Figure 5.5 shows one of our simulations in detail. This simulation is initialized
with J, = 0.06641 and )¢ = 5 hours. All three planets migrate inward and are
caught into their respective mean-motion resonances at around t ~ 1 Myr, at
which point they migrate inward in lockstep. At around ¢t = 8 Myr, the spin-orbit
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Figure 5.5. A fiducial case of the dynamical evolution of the HIP-41378 system, which
leads to secular spin-orbit resonance and high planetary obliquity. The upper-left subplot
shows convergent migration of the three outer planets. Each is initialized just wide of
their present-day mean-motion resonances and are quickly caught into them, and migrate
inward in lockstep afterwards. At around {~15 Myr, we turn the migration force off. The
bottom left plot shows the planetary obliquity evolution of HIP-41378 f. At around {~8
Myr, the spin-orbit resonance is entered and the planetary obliquity is steadily excited
until migration is turned off. The obliquity is stable at 52°. The right hand plot shows a
polar view of the evolution of the planetary spin axis in a frame that precesses with the
planet’s orbit. The distinctive banana-like librations of capture into a Cassini State are
visible.
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resonance is reached and the planetary obliquity slowly grows until the migration
is halted at t ~ 15 Myr, at which point it remains stable with small oscillations due
to libration around the fixed point at around 50°.

We also report results from our entire ensemble of simulations, shown in Fig-
ure 5.6. We plot the final obliquity of planet f against its final J, moment for each
simulation. We also ran similar suites of simulations slightly varying mutual in-
clination and migration speed, with no significant differences — the final planetary
obliquity is mostly sensitive to the [, moment of HIP-41378 f. Note that the planet’s
spin rate does not meaningfully evolve over the course of the simulations, so this
J2 is essentially the primordial value. For reference, we have also plotted the oblig-
uities and ], moments of the solar system giant planets. As predicted from our
frequency analysis, starting at |, slightly higher than Saturn’s HIP-41378 f is able
enter the spin-orbit resonance and excite high planetary obliquity. The range in
J> for capture into the spin-orbit resonance is approximately Saturn’s J, to around
20x Saturn’s |, — planets that are more or less oblate than this range fail to lock into
the relevant frequency peak. Not all of our simulations in this range are able to
attain high obliquity, which we attribute to the probabilistic nature of resonance
capture (Su & Lai, 2022). The plot is color-coded with the ring particle density
needed to generate a ring system with sufficient extent to reproduce the observed
transit depth, assuming an orientation with (¢ = 0) and the final planetary oblig-
uity. Points in black are unable to host ring systems with sufficient extent without
resorting to ring particles more porous than the fiducial limit we discussed in
Section 5.3.1, while the colored points are capable and heavily populate the region
of ], parameter space where spin-orbit resonance is achieved.

Our results indicate that there is a large region of reasonable parameter space in
which the convergent migration process can be expected to generate a high enough
planetary obliquity in HIP-41378 f to sufficiently warp an opaque ring system out
of the orbital plane to masquerade as an unusually puffy planet. We predict
that if HIP-41378 f is at least as effectively oblate as Saturn then high planetary
obliquities can very reasonably be attained. This assumption is not a given, but is
not unrealistic. We briefly enumerate some caveats and limitations of our study.
First, the evolution of planetary structure over the course of the simulation is not
considered (e.g. Lu et al.,, 2024a). The most significant effect overlooked is the
evolution of the planetary spin rate, which is not dynamically impacted by the
migration process and thus remains constant in our simulations. However, as
gas giant planets accrete from the circumstellar disk their spin rates are expected
to form near their breakup spin rates, and then magnetohydrodynamical effects
work to expel angular momentum from the system and drive the spin rates to the
significantly sub-critical values we observe in the giant planets of our solar system
(Batygin, 2018). This does not change the limits on the range of viable planetary
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Figure 5.6. Population-level statistics of our migration simulations, plotting final planetary
obliquity vs the J> moment of planet f. The colorbar represents the density of ring particles
needed to generate a large enough ring consistent with the observed transit depth for the
given final obliquity, assuming the most optimistic face-in geometry. The black points are
incapable of generating the observed transit. For reference the obliquities and J, moments
of the solar system giant planets are also plotted. We see that starting from simulations

run with Saturn’s ], planetary obliquities capable of hosting a ring system that generates
HIP-41378 {’s transit profile are possible.
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J2s that can excite obliquity, however — this limit is set by a match between the spin
axis precession rate and the present-day orbital frequencies, the latter of which
is well-constrained from the orbital solutions. We also did not explore a wide
range of initial migration configurations, opting to arbitrarily initialize the planets
at roughly twice their present-day orbits. If the migration process is significantly
shorter than this, it will be more difficult to induce the requisite |a/g| crossing as
the frequencies will evolve less. The initial formation locations of these planets
are unconstrained. Finally, in our simulations we did not consider the effect of the
ring on the dynamics of the spin axis itself. The only effect the ring is expected
to have is a minute enhancement in a, which would be far outweighed by the
uncertainties in the physical parameters of the planet.

5.5.4 The Effect of a Massive Moon

Our population-level results in Figure 5.6 predict high obliquities if a certain |,
threshold is achieved. We have discussed |, thus far in the context of planetary
oblateness only, but there are in fact many ways to increase the effective ], of the
planet. One reasonable way is to include the effect of a massive moon, which
were shown to be tidally stable around HIP-41378 f by Harada et al. (2023). In this
subsection we briefly describe how a massive moon could function as a form of
precession enhancement, which would allow less oblate Neptune-like planets to
be caught into spin-orbit resonance.

We wish to investigate the effect a massive satellite has on the rate of spin-axis
precession, given by Equation (5.7). There are two effects to consider: there are
enhancements in [, moment and the normalized moment of inertia C. These can
be written (Tremaine, 1991; Ward & Hamilton, 2004; Lu & Laughlin, 2022):

2
1 m: a:
] 2 effective = ]z,planet + E Z (m—;) (R_;)

1 (5.12)
Ceffective = Cplanet + m Z miaizni
where m; is the mass, 4; is the semimajor axis and #; is the orbital mean motion
of the ith satellite in the system. It is important to note that Equation (5.12) is
only valid for satellites within the Laplace radius of the planet, given by Equation
(5.3). Beyond the Laplace radius, the moon may be inclined with respect to the
equatorial plane of the planet, the enhancement in precession must be considered
differently (Saillenfest & Lari, 2021). For the purposes of this work Equation (5.12)
is a good approximation as the Laplace radius for HIP-41378 fis very large, ranging
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Figure 5.7. Exploration of how a massive moon enhances spin precession rate. We
plot moon mass on the x-axis and moon semimajor axis on the y-axis, and the colorbar
represents the spin precession rate of a planet with Neptune-like oblateness, spin rate
and moment of inertia at the present-day orbit of HIP0-41378 f, enhanced by a moon
of corresponding mass and orbit. The red line delineates the spin precession rate of a
Saturn-like planet at the same orbit, the nominal requirement for capture into spin-orbit
resonance as seen in Figure 5.6. The black region is parameter space in which the moon
cannot sufficiently generate the requisite spin precession rate, with the opposite for the
colored region. For reference the mass and semimajor axis ratios of the outermost major
satellite of the four solar system giant planets are also plotted, and all are in the allowed
parameter space. Note that all plotted moons are located significantly exterior to the Roche
radius of the planet and hence the outer extent of the rings, which is typically around 3 — 4
R; for our simulations.

from 37 to 122 R;. This is beyond the orbital radius of the largest moons in our
solar system, so we proceed to analyze enhancement in o under the assumption
that a putative moon remains within the Laplace radius.

Figure 5.7 displays the precession enhancement a realistic moon may have. The
colorbar corresponds to the precession rate @ a Neptune-like planet at HIP-41378
t’s present-day orbit would exhibit if a moon of a given mass and semimajor axis
was orbiting it. The red contour corresponds to the precession rate of a Saturn-
like planet, the nominal cutoff for capture into secular spin-orbit resonance in our
simulations, in the same location. For reference, the outermost major satellites of
the four solar system planets are also plotted. We see that all four satellites are in
the region of parameter space capable of sufficiently enhancing the precession rate
of a Neptune-like planet to Saturn-like levels. Hence, a realistic satellite greatly
expands the allowable physical parameter space of HIP-41378 f that results in
capture into spin-orbit resonance.

We conclude that accounting for the existence of a realistic massive moon
essentially allows all reasonable physical parameters associated with HIP-41378
f to result in capture into spin-orbit resonance. A large migrating exomoon was
posited as the both the source of HIP-41378 f’s obliquity and the ring system itself
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by Saillenfest et al. (2023) — in fact, the two scenarios are not incompatible with
one another as a migrating exomoon acts to increase the spin precession rate. The
detection of exomoon may be feasible in the near future (e.g. Kipping et al., 2022),
which would represent additional credence to our theory.

5.6 Other Super-Puffs

We now briefly analyze the possibility of secular spin-orbit resonance in other
super-puff systems. While the exoring hypothesis is less necessary to explain
these super-puffs due to their closer-in orbits, it remains a viable solution to some
of the super-puffs at farther distances (Piro & Vissapragada, 2020). In addition,
for the closest super-puffs tidal heating may render obliquity tides significant
(Millholland, 2019; Millholland et al., 2020). Both of these hypotheses support the
intriguing results of Millholland & Laughlin (2019) and Leleu et al. (2024) who
showed that sub-Neptunes near resonance tend to be pulffier.

Secular spin-orbit resonance requires nodal precession of the orbit, as described
in Section 5.4. One way to drive nodal precession is the |, moment of the host star
(e.g. Brefka & Becker, 2021; Faridani et al., 2023). However, the most natural way to
maintain spin-orbit resonances is companion planets. We thus restrict our attention
to super-puffs in multi-planet systems. We thus consider five additional systems:
Kepler-223 (Mills et al., 2016), Kepler-177 (Vissapragada et al., 2020), Kepler-359
(Hadden & Lithwick, 2017), Kepler-51 (Masuda, 2014), and K2-24 (Petigura et al.,
2018). Intriguingly, a number of these systems also lie in resonant configurations,
potential evidence of migration in the system’s history (e.g. Lee & Chiang, 2016).

We numerically analyze the frequency power spectra of each system as in
Section 5.5. We compare the peaks of this frequency analysis to a set of physically
reasonable a values for each super-puff, given by a Neptune-like oblateness and
rotation rates ranging fro 10 hours to 36 hours for reference. These are shown in
Figure 5.8. In each subplot, the black dots are a representative frequency power
spectrum for the system, and the vertical bands correspond to the reasonable a
values we explored where each color corresponds to a super-puff in the system.
Note that while some of these planets may be expected to be tidally locked, we
did not find any near-matches for a precession rates associated with tidally locked
states and thus do not depict them. We find possible matches for the following
super-puffs: Kepler-51 d, Kepler-359 d, K2-24 c, Kepler-177 c, Kepler-223 e — in
other words, there is a super-puff in every system which can potentially be in a
spin-orbit equilibrium.

We briefly comment on the Kepler-51 system, a well-studied system thatisin a
1:2:3 resonant chain (Masuda, 2014) and believed to have arrived at its present-day
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Figure 5.8. Frequency analysis of five multi-planet super-puff systems. Each subplot
is analogous to the upper panel in Figure 54. The vertical colored bands represent
reasonable present-day ranges of a for each of the super-puffs in the system, color-coded
by designation. We find a near match for at least one super-puff in each system.
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configuration via convergent migration (Lee & Chiang, 2016). The recent work of
Lammers & Winn (2024b), who inferred an unusually slow rotation period of > 40
hours for Kepler-51 d via a measurement of the (lack of) planetary oblateness. One
explanation they discussed was a high planetary obliquity, with 6 > 75°, which
could mask the true oblateness of the planet in the sky-projected obliquity. Their
results, taken in conjunction with the near-match in frequency space for Kepler-51
d shown in Figure 5.8 and the potential migration history of the system, indicates
a high-obliquity state for Kepler-51 d is a very reasonable prospect. We defer more
detailed analysis of this, as well as the other super-puff systems enumerated, to
future work.

5.7 Conclusion

In this work, we have investigated the dynamical history of the HIP-41378 system,
motivated by the anomalous low density of the outermost planet HIP-41378 f.
We find strong evidence that the system formed via convergent migration, as the
outer three planets lie near a 4:3:2 resonant chain that is dynamically unstable
on short timescales otherwise. We also find that if HIP-41378 f has a [, moment
slightly greater than that of Saturn or is accompanied by a massive satellite system,
this migration process likely results in capture into secular spin-orbit resonance
and significant excitation of the planetary obliquity. If there is an opaque system
of planetary rings around HIP-41378 f, this obliquity is in many cases able to
reproduce its anomalous transit signal. Hence, we assert that a dynamical history
involving convergent migration simultaneously explains both the system’s long-
term stability as well as in many cases generating a high planetary obliquity. This
high planetary obliquity lends credence to the popular theory that HIP-41378 f is
not in fact an extremely low-density planet far from its host star, but rather hosts
a system of opaque rings (Akinsanmi et al., 2020). We have shown that the spin-
orbit configurations arising from convergent migration naturally lead to systems
which can host large enough ring systems to reproduce the observed transit depth
and anomalous density of HIP-41378 f. We also briefly comment on other super-
puffs in multi-planet systems, and show that many of them are also plausibly in
high-obliquity states.

We therefore encourage immediate additional observations targeted at HIP-
41378 f to verify the true nature of the exoring hypothesis. Our work has demon-
strated the first-order feasibility of differentiating between planetary rings and a
puffy planet in a transit lightcurve. More nuanced modelling is certainly possible
to take advantage of the vast capabilities of JWST, including accounting for the
oblateness of the planet itself and rings which are not fully opaque. Scattered
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(Barnes & Fortney, 2004) and reflected light (Arnold & Schneider, 2004) from ring
particles may also imprint themselves on the transit lightcurve. Spectroscopic
effects (Ohta et al., 2009) may also be relevant, among a host of other less obvious
effects (Heller, 2018). A variety of numerical tools designed to simulate transit
lightcurves of non-spherical objects are now available, including squishyplanet
(Cassese et al., 2024a), eclipsoid (Dholakia et al., 2024) and greenlaturn (Price
etal., 2024). In particular, Price et al. (2024) measured constrained a low oblateness
of HIP-41378 f with K2 data, which could be explained via slow rotation or nearly
face-on planetary rings. In the era of JWST, such measurements will be vital in
divining the true nature of HIP-41378 {’s puffiness.

Super-puffs represent one of the most intriguing unsolved mysteries in exo-
planet science today. Our work has highlighted the importance of dynamics in this
conversation, which until recently has been primarily a structural debate. While
exorings may not be a necessary or even viable explanation for other super-puffs,
planetary obliquity may still be highly relevant in the form of obliquity tides. The
signatures of tidal heating are readily visible in transmission spectra (e.g. Sing
et al., 2024; Welbanks et al., 2024). As most super-puffs are observed to be on
circular orbits, so hence unable to be heated via eccentricity tides, tidal heating
signatures would almost certainly point to significant planetary obliquity. We
thus again encourage further atmospheric observations of these super-puffs as
potential tests of tidal heating and signs of planetary obliquity.
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Chapter 6

The Dynamical History of the HAT-P-11
System

"Every great advance in science has issued from a new audacity in imagination."
—John Dewey
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Abstract

The two planets of the HAT-P-11 system represent fascinating dynamical puzzles
due to their significant eccentricities and orbital misalignments. In particular,
HAT-P-11 b is on a close-in orbit that tides should have circularized well within
the age of the system. Here we propose a two-step dynamical process that can
reproduce all intriguing aspects of the system. We first invoke planet-planet
scattering to generate significant eccentricities and mutual inclinations between
the planets. We then propose that this misalignment initiated von-Zeipel-Lidov-
Kozai cycles and high-eccentricity migration that ultimately brought HAT-P-11
b to its present-day orbit. We find that this scenario is fully consistent only
when significant tidally-driven radius inflation is accounted for during the tidal
migration. We present a suite of N-body simulations exploring each phase of
evolution and show that this scenario is consistent with all observational posteriors
and the reported age of the system.

6.1 Introduction

The mid-K dwarf HAT-P-11 hosts an intriguing system that has been the subject of
much interest in recent years. The system has two known planets. The first, HAT-
P-11 b, is a close-in (a, = 0.0525 AU) eccentric (e, = 0.218) super-Neptune (m, =
23.4 M) first identified by Bakos et al. (2010). Follow-up Rossiter-McLaughlin
(Rossiter, 1924; McLaughlin, 1924) analysis of the system by Hirano et al. (2011) and
Sanchis-Ojeda & Winn (2011) revealed that the orbit of HAT-P-11 b is polar (¢ ap =
106°), which makes it a member of the potential population of perpendicular
planets (Albrecht et al., 2021; Dong & Foreman-Mackey, 2023; Siegel et al., 2023).

HAT-P-11 b presents an interesting dynamical puzzle. Planets as close-in as
HAT-P-11 b are expected to be on circular orbits due to tidal forces. The fact
that HAT-P-11 b is significantly eccentric, coupled with its unusual perpendicular
orbit, points to a dynamically hot history. Yee et al. (2018) greatly advanced our
understanding of the dynamical history of the system with their discovery of the
second planet in the system, HAT-P-11 ¢, an eccentric (e. = 0.6) super-Jupiter
(mcsini = 1.6 Mj) on an a. = 4.1 AU orbit. Their dynamical analysis of the
system concluded that with this additional companion, both the eccentricity and
spin-orbit misalignment of HAT-P-11 b could be explained on the condition that
HAT-P-11 c was also misaligned. At the time, the orbital inclination of HAT-P-11
¢ was unconstrained.

The final piece of puzzle, the misalignment between the orbits of HAT-P-11 b
and HAT-P-11 ¢, was initially explored by Xuan & Wyatt (2020), in which they
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Table 6.1. Parameters of the HAT-P-11 System

Parameter ‘ Value Reference
Host Star

Mass (M) 0.81*002 Bakos et al. (2010)
Radius (Ry) 0.75*002 Bakos et al. (2010)
Age (Gyr) 6.5737 Yee et al. (2018)
HAT-P-11 b?

Mass (Mg) 234472 Yee et al. (2018)
Radius (Rg) 4.367000 Huber et al. (2017)
a (AU) 0.05254 1) 00064 Yee et al. (2018)
e 0.218"00% Yee et al. (2018)
HAT-P-11 ¢

Mass (M) 2.68 +0.41 Paper 1
a (AU) 4.10 £ 0.06 Paper 1
e 0.652 +0.017 Paper 1
Pac(®) 45 to 138° Paper 1
Ppc(°) 49 to 131° Paper 1

AHirano et al. (2011) and Huber et al. (2017) give slightly different values for spin-orbit
misalignment and eccentricity, respectively.

bRange enclosing 95% of the (highly non-Gaussian) posterior

derived a bimodal inclination distribution for HAT-P-11 ¢, providing evidence
of a large mutual inclination between planet b and c. An et al. (2024) (hereafter
Paper 1) combined astrometry data from Hipparcos and Gaia with radial velocity
data from Keck/HIRES to constrain the orbit of HAT-P-11 ¢, including a more
precise bimodal constraint on inclination. All relevant orbital quantities of the
system are well-constrained and are presented in Table 6.1. In Paper 1, the two
inclination modes are treated separately, together with the projected stellar spin
constrained by Sanchis-Ojeda & Winn (2011), to calculate the alignment of all three
main angular momentum vectors in the HAT-P-11 system. Paper 1 reports the
tirst measurement of the spin-orbit misalignment of HAT-P-11 ¢, and significantly
improved measurements of the mutual inclination between HAT-P-11 b and HAT-
P-11 c. A schematic view of the orbits is shown in Figure 6.1. We are now in a
position to postulate the complete dynamical history of HAT-P-11.

Both planets in the HAT-P-11 system represent dynamical puzzles, and the
formation history of the system has been explored by Petrovich et al. (2020);
Pu & Lai (2021) among others. In this work we propose a two-step formation
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Figure 6.1. Schematic view of one possible orbital architecture of the HAT-P-11 system,
based on posteriors from Table 6.1. We label the eccentricities and misalignments between
each orbit and the stellar spin axis.

mechanism: we posit that both HAT-P-11 b and HAT-P-11 c initially formed in
circular aligned orbits, along with two other large planets. Through dynamical
instability and subsequent planet-planet scattering, both additional planets were
ejected from the system. As a result, HAT-P-11 b and HAT-P-11 ¢ were left on
eccentric and misaligned orbits, which triggered von-Zeipel-Lidov-Kozai (ZLK)
migration in HAT-P-11 b. Through these mechanisms, all aspects of the present-
day configuration of the system are reproduced.

The paper is organized as follows. In Section 6.2 we show that planet-planet
scattering results in significant eccentricities and orbital misalignments for both
planets, and we reproduce the present-day orbit of HAT-P-11 c. In Section 6.3
we similarly reproduce the present close-in state of HAT-P-11 b using a series of
N-body ZLK simulations accounting for both tidal and thermally driven radius
evolution. We discuss implications of our study and conclude in Section 6.4.

6.2 Planet-Planet Scattering

The high eccentricity of HAT-P-11 ¢, coupled with the significant spin-orbit mis-
alignment reported in Paper 1, is the first dynamical puzzle. Naively, one would
expect planets to form in circular, aligned orbits, thanks to strong eccentricity
damping within the protoplanetary disk. Any deviation from this paradigm is
believed to be the imprint of a dynamically active history. A number of well-
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understood mechanisms are known to excite the eccentricities and inclinations of
planets, including but not limited to the von-Zeipel-Lidov-Kozai (ZLK) effect (von
Zeipel, 1910; Lidov, 1962; Kozai, 1962) and secular chaos (Wu & Lithwick, 2011).
Both of these mechanisms require an additional undetected companion in the sys-
tem, something for which there is no direct evidence in the HAT-P-11 system. The
existing radial velocity data are satisfactorily explained by two planets with no
residual trend, and the measured astrometric acceleration is similarly consistent
with the two known planets (Paper 1). To evade these constraints, an additional
planet would have to be low-mass and/or very widely separated and hence be dy-
namically insignificant. Planet-disk interactions during planetary migration can
excite eccentricities without the need for a companion, but this mechanism cannot
generate the spin-orbit misalignment.

In the absence of a more distant perturber, the most promising pathway is
planet-planet scattering, where close encounters between pairs of planets lead to
strong gravitational interactions that produce large eccentricities and obliquities.
While additional planets would be required for this mechanism, violent scattering
is prone to ejecting planets or scattering them to wide orbits where they would be
difficult to detect (e.g., Chatterjee etal., 2008; Carrera et al., 2019; Frelikh et al., 2019).
In this section, we explore the generation of HAT-P-11 c’s significant eccentricity
and orbital misalignment through N-body simulations of planet-planet scattering.

6.2.1 Theoretical Background

A wealth of literature exists on the subject of planet-planet scattering. Analytic
treatment of this problem is difficult, so most analyses have been performed with
numerical simulations. For a comprehensive review, see Davies et al. (2014). Here
we summarize some of the most relevant key results for our study.

The stability of systems involving only two planets is well-understood analyt-
ically (Gladman, 1993). Studies such as Ford et al. (2001), Petrovich et al. (2014)
and Gratia & Fabrycky (2017) have shown that two-planet systems can attain a
wide range of eccentricities but very rarely high mutual inclinations. Three-body
scattering, on the other hand, can both excite eccentricity to arbitrarily large val-
ues and raise inclination up to 90° (Chatterjee et al., 2008; Juri¢ & Tremaine, 2008;
Carrera et al., 2019). In the spin-orbit misalignment posterior derived in Paper
1, the 95% confidence interval is given by 45° to 138°; thus the ~40° lower limit
requires three-body scattering to be invoked.

The stability of three-body systems cannot be obtained analytically. From
numerical studies, system stability is both highly chaotic and dependent on mean-
motion resonances (e.g., Marzari, 2014; Rath et al., 2022). However, to first-order
the time to dynamical instability grows logarithmically with mutual separation
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(Marzari & Weidenschilling, 2002). The mutual separation is commonly parame-
terized by the mutual Hill radius (though note that other criteria often offer better
predictions, e.g Lammers et al. (2024)):

a;+a;_
Ri == 1(

m; + m;_1 )1/3
7

3L (6.1)

where a;, m; are the semimajor axes and masses of the ith planet and M. is the mass
of the star. The A parameter denotes the separation in units of the mutual Hill

radius,
a;,—ai—1

Ru
The instability timescale grows as the separation between the planets increases
(e.g., Chambers et al., 1996; Pu & Wu, 2015; Tamayo et al., 2020b).

A=

6.2)

6.2.2 N-Body Simulations

Scattering simulations are computationally expensive, and there is a large parame-
ter space that the primordial system could inhabit. To work around this, we adopt
a sequential approach.

We first use three-planet simulations, with HAT-P-11 ¢ and two additional
bodies but without HAT-P-11 b, to show that planet-planet scattering can exactly
reproduce HAT-P-11 c’s present-day orbit with the other bodies either ejected
from the system or scattered to very wide orbits. This step assumes that we
may neglect HAT-P-11 b for the purposes of reproducing HAT-P-11 ¢’s observed
parameters. We test this assumption by running an additional suite of scattering
simulations with HAT-P-11 b present on an initial 0.3 AU orbit (roughly five times
its present-day semimajor axis). In this suite of simulations with HAT-P-11 b,
we do not seek to exactly reproduce HAT-P-11 c’s orbit, given the extremely tight
constraints on its semimajor axis and the large chaotic parameter space introduced
by adding another surviving planet to the system. Rather, we content ourselves
with showing that these simulations qualitatively match the architecture expected
from the three-planet scattering simulations.

Our tiered approach to N-body simulations allows us to construct a statistical
picture of the likely configurations of HAT-P-11 system after violent scattering
from an initial four-planet configuration. We can then estimate the fraction of
the available parameter space that can produce the high mutual inclinations and
significant eccentricities that are observed for HAT-P-11 ¢, along with a range of
plausible initial conditions for HAT-P-11 b’s subsequent orbital evolution. This
evolution under the influence of ZLK oscillations and tides is discussed in Section
6.3.
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Three-Planet Simulations

We perform 1000 three-planet simulations using the IAS15 integrator (Rein &
Spiegel, 2015) in the REBOUND N-body integrator package (Rein & Liu, 2012). We
use the adaptive timestep criterion described in Pham et al. (2024). The setup of
our simulations is as follows: we consider three identical planets with m; = m, =
ms = 2.68 Mj, the best-fit value for HAT-P-11 ¢’s mass. We note that our results are
not sensitive to the masses of the three planets. We also ran a set of simulations
with my = m,, my, = m./2 and m3 = m./4 following the prescription of Anderson
et al. (2020), and found no significant differences at the population level.

Three-body scattering tends to result in a single surviving planet, or additional
survivors on highly eccentric/marginally unbound orbits (e.g Carrera et al., 2019).
In both cases, the orbital energy of the non-innermost planets is nearly zero.
Conservation of energy thus demands

l:i+i+i. (6.3)

ag M, @2 03
We set af = 4.10 AU, the present-day semi-major axis of HAT-P-11 c. In the
interest of minimizing computation time, we set A = 3 to induce rapid instability
and scattering in our systems. This is unrealistically compact for primordial
planetary systems, where separations would be expected to be around 5-10 mutual
Hill radii (Raymond & Morbidelli, 2022). Changing the mutual separation of the
planets does not qualitatively affect the scattering outcome, only the timescale until
dynamical instability (e.g Chatterjee et al., 2008; Anderson et al., 2020). The above
criterion hence informs the initial semi-major axes of the three planets: 4;; = 8.759
AU, a,; =12.930 AU, a3, = 19.086 AU. In each simulation, the other relevant orbital
parameters for each planet are chosen at random from the following uniform
distributions:

e ~U(0.01,0.05)
i~U©0°,2°% (6.4)
f,w,Q ~UO,2m)

Note that we do not track the motion of the stellar spin axis in our simulations.
Rather, we assume that the star’s initial spin axis points along the z-axis and does
not evolve significantly over the course of our simulations. With this assumption,
the orbital inclination i can be used as a proxy for the spin-orbit misalignment
Y ac. We account for collisions via merging planets (conserving mass, volume and
momentum but not energy) using the reb_collision_resolve_merge collision
module. We also remove particles if they exceed a distance of 10° AU from the
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origin, using the exit_max_distance feature.

Figure 6.2 shows an example of one of our simulations. The system rapidly
enters a regime of dynamical instability, as expected from the initialization of
the planets at small mutual Hill radii. This epoch is characterized by sudden
perturbations in semimajor axis, eccentricity and inclination triggered by close
encounters. Within 1 Myr, one planet is completed ejected from the system. The
remaining two planets continue to experience perturbations in eccentricity and
inclination, until a second planet is ejected from the system around 5 Myr. At this
point, HAT-P-11 c has gained significant eccentricity and inclination. The final
orbital elements of HAT-P-11 care a. = 4.12 AU, e, = 0.639, and 1. = 65.3°, which
are all time-averaged values over the last 5 Myr of the simulation.

In Figure 6.3 we report statistics from the entire ensemble of simulations. We
plot histograms of the distributions in 4., e. and 4. of the innermost surviving
planet in each simulation, as well as the present-day 1o constraints (20 for {sc) on
the orbit of HAT-P-11 ¢ from Paper 1. The simulation results are as expected: a.
is strongly peaked near the present-day value, and both e. and /s, show a wide
range of values that easily encompass the constraints. This shows that our system
setup is capable of consistently producing orbits similar to that of HAT-P-11 c.

Of the 1000 simulations we ran, the number with 1, 2 and 3 surviving planets
were 197,802 and 1, respectively. The most common outcome by far is a system
with two surviving planets, which would imply an external undiscovered planet
in the HAT-P-11 system.

The extra planet is not in tension with observations, because the extraneous
surviving planet is generally very far out and hence would be undetectable. In
some cases the extra planet produces long-term secular oscillations in the orbital
elements of HAT-P-11 ¢, but this does not impact the system’s stability. In our sim-
ulations there are a total of 908 extraneous planets that survive. The 1o semimajor
axis distribution of these planets is dexra = 72733° AU, while the perihelion distri-
bution of these 4, exira = 2837 AU. There are only 5 simulations where there is an
orbit crossing between any of the extra planets and the surviving HAT-P-11 c. We
do not analyze the stability of the surviving systems in-depth; an analytic criterion
such as the one introduced by Hadden & Lithwick (2018) could be used to this end.
We conclude that planet-planet scattering in a three planet system well-reproduces
the unusual spin-orbit misalignment and eccentricity of HAT-P-11 c.

Four-Planet Simulations

We now consider the effect of planet-planet scattering on the orbit of HAT-P-11
b by running a suite of four-planet scattering simulations. The setup of these
simulations is as follows. We perform 10,000 simulations using the new hybrid
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Figure 6.2. Example three-body scattering results for the origin of HAT-P-11 c¢. The
thick maroon line and the two thin blue lines represent the orbital elements of HAT-P-
11 c and the two ejected planets (EP), respectively. The subplots show the semimajor
axis, eccentricity, and spin-orbit misalignment evolution of the three bodies, from top
to bottom. When a planet is fully ejected from the system (heliocentric distance > 10°
AU) or becomes unbound (a < 0), the line associated with the evolution of that planet
is terminated. The black dot on the right-hand side of each subplot denotes our derived
values for the present-day system, with the error bar representing the 1o posteriors for
semimajor axis and eccentricity and the 20 posterior for spin-orbit misalignment.
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Figure 6.3. Results from our ensemble of three-body scattering simulations. We plot
distributions in 4, e and 5. for the innermost planet in our three-planet simulations. The
black lines correspond to the best-fit present-day values of HAT-P-11 ¢ from Table 6.1,
with the dotted lines representing the 1o error bars for a. and e. and 2¢ for ac. All three
orbital element ranges are well-represented in our sample, showing that this system can
easily be produced through planet-planet scattering without fine-tuning.

integrator TRACE (Lu et al., 2024b) in REBOUND. We initialize the outer three bodies as
in the previous section. However, we now initialize HAT-P-11bonana, = 0.3 AU
orbit (roughly 5xX its present-day semimajor axis), with all other orbital elements
randomized in the same fashion as the three outer planets. The semimajor axis of
HAT-P-11 b does not change significantly for most of our simulations. We adopt
a timestep of 0.022 years, which is roughly 1/9th of HAT-P-11 b’s initialized orbit.
These simulations are also integrated for 107 years. We also extend the maximum
simulation distance to 10* AU. The mean fractional energy error over our 10,000
simulations is 107.

Figure 6.4 shows statistics of orbital elements from our simulations. We restrict
our discussion to simulations in which HAT-P-11 b survives on an orbit within
ap, < 4 AU; 5355 simulations satisfy this criterion. Of these simulations, the vast
majority (4743, or 89%) result in three-planet systems comprised of HAT-P-11
b, HAT-P-11 ¢, and a very distant outer perturber. This is consistent with our
results from the previous subsection, which shows that HAT-P-11 b does not play
a significant role in the scattering dynamics of the giant planets. 611 simulations
resulted in two-planet systems and 1 simulation resulted in a four-planet system.
We plot the eccentricities and inclinations of all planets corresponding to HAT-
P-11 b, HAT-P-11 ¢ and extraneous outer planets in their respective simulations
as a function of semimajor axis. The semimajor axis 1o distributions are given

by ay, = 029000 AU, a. = 4.31*079 AU and aouer = 5977 AU. We also see that
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HAT-P-11 b can be scattered onto a wide range of inclinations and eccentricities.
These 10 distributions are given by e, = 0.117%5 and ap = 25*%7 degrees. We also
ran simulations initializing additional planets between the orbits of HAT-P-11 b
and HAT-P-11 ¢, which are overwhelmingly ejected.

We conclude that the planet-planet scattering which was likely responsible for
the eccentric and misaligned orbit of HAT-P-11 c also likely resulted in HAT-P-
11 b gaining an eccentric and misaligned orbit. Crucially, this creates significant

misalignment between the orbits of the two planets.

6.3 ZLK Migration

The orbit of HAT-P-11 b is an even bigger puzzle than planet c. Its near-polar
orbit with ¢4, ~ 106° (Stassun et al., 2017) is highly unusual. Most intriguingly,
planets as close-in as HAT-P-11 b would naively be expected to have perfectly
circular orbits, due to significant tidal effects acting quickly to circularize the orbit.
Indeed, the vast majority of hot Jupiters observed do have circular orbits (Dawson

& Johnson, 2018). To first order, the tidal circularization timescale is given by
(Goldreich & Soter, 1966):

- -5
teire = @\/?Mg@pmplzp . (6.5)
Plugging in the present-day values of the system and Q, = 10°, a fiducial estimate
for the tidal quality factor of a Neptune-like planet (e.g Millholland, 2019), we
obtain t... = 2 x 10° years, which is compatible with the system’s age of 6.5*37 Gyr
(Yee et al., 2018). However, these expressions must be used with caution. Wisdom
(2008) found that the standard analytic expressions can underestimate tidal dissi-
pation by several orders of magnitude for high eccentricities, and expressions such
as Equation (6.5) significantly overpredict the circularization timescale. Given this,
and the fact that tides act more efficiently at the highest eccentricities, we naively
expect that HAT-P-11 b should be circularized.

However, we cannot state with certainty that the orbit should be circularized.
First, we note that the default calculation of t.;. is not that far off from the system’s
age. In addition, the unconstrained tidal quality factor Q, may well be higher
than the nominal value of 10° as argued by Mardling (2008). In this case, HAT-P-
11 b could have formed at its present-day semimajor axis and gained significant
eccentricity/spin-orbit misalignment through scattering alone, without having suf-
ficient time to fully circularize. Given the timescales and assumptions enumerated,
we consider this scenario a somewhat unlikely but certainly possible scenario.

In this section, we explore a more likely alternative, where ZLK oscillations
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Figure 6.4. Results from an ensemble of 10,000 four-planet scattering simulations. We plot
the eccentricities and inclinations of the planets representing HAT-P-11 b (green), HAT-
P-11 c (maroon) and external planets (blue) as a function of semimajor axis. The points
referring to HAT-P-11 b and HAT-P-11 ¢ always correspond to the innermost planet and
the innermost giant planet in our simulations, respectively. In every simulation these are
distinct. The distributions of HAT-P-11 ¢ and the outer planets are qualitatively consistent
with our results from the three-planet scattering simulations. We see that HAT-P-11 b may
be scattered to arbitrarily high eccentricities and very high inclinations.
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(drivenby HAT-P-11 c) and subsequent tidal circularization and migration actas an
avenue to explain both the eccentricity and spin-orbit misalignment of HAT-P-11
b. We use initial conditions consistent with our four-body scattering simulations.

6.3.1 ZLK Oscillations

Lidov (1962) and Kozai (1962) independently identified a fascinating behavior
characteristic of hierarchical three-body systems. Consider such a system, and
denote the three bodies as the star, b, and c. If the mutual inclination between the
orbits of b and c are significantly misaligned (39.2° < ¢, < 140.8°), then the orbit
of b will experience high-amplitude coupled oscillations in eccentricity and incli-
nation in the absence of short-range forces such as general relativity. Commonly
referred to as the Kozai-Lidov effect, the initial discovery of this mechanism by
von Zeipel (1910) has been recently brought to light by Ito & Ohtsuka (2019). We
hence adopt the name von Zeipel-Lidov-Kozai, or ZLK effect.

For an in-depth review of the ZLK effect as well as its many applications, see
Naoz (2016). We provide in this paper a brief overview of the analytic under-
standing of the ZLK effect necessary to interpret our results. The simplest way to
investigate the ZLK effect analytically is in the hierarchical secular approximation,
which averages over the mean motion of both b and ¢ (Ford et al., 2000). The
validity of this approximation holds as long as a. > a,. The initial parameter
space of the HAT-P-11 system in our simulations does not always satisfy this re-
quirement (a,/a. < 0.1), so we will use direct N-body simulations to explore our
system to obtain more accurate results. However, good first-order understanding
can still be gained from the secular approximation'. In this approximation and
assuming b is a test particle, ¢’s orbit remains unchanged throughout the system’s
evolution, and b’s semimajor axis remains fixed. The maximum amplitude of the
eccentricity oscillations depends on the initial mutual inclination: assuming the
inner begins on a circular orbit, e, max = /1 — (5/3) cos? Y (in the quadrupole
limit). The period of the ZLK oscillations is of order (e.g., Fabrycky & Tremaine,
2007):

2
2PZ Miggar + My, + M (1-e2), (6.6)

TzLK =
3Py Me

where Py, P, are the periods of the inner and outer bodies, respectively.

The genesis of these effects is the apsidal precession of b’s orbit, @y, generated
by the weak perturbations of the outer. In the secular approximation, the apsidal
precession rate can be explicitly calculated. The orbit-averaged Hamiltonian of

'The extent to which the secular approximation is valid for mildly hierarchical systems is
discussed in Grishin et al. (2018).
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the system is (Ford et al., 2000; Fabrycky & Tremaine, 2007):

_ Gmstarmb _ G(mstar + mb)mc

24y, 24,

Gmstarmbmc aIZ) (67)

Mgtar + My 8112(1 — 63)3/2
X [2 + 3¢l — sin® Ppe(3 + 12¢7 — 15¢} cos a)b)]

(H) =

where 1, is the mutual inclination between bodies b and c. This equation can be
solved for the apsidal precession rate; see Naoz et al. (2013); Naoz (2016) for an
in-depth derivation:

1
Wb 7LK = 6C2[—(4 cos? Ype + (5cos(2wp) — 1)

Gy
X (1- eﬁ — cos? l,bbc)) (6.8)
+ COZZDbC (2 + e§(3 -5 Cos(2a)b))]
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(6.9)

where G is the gravitational constant, L. are the Delaunay action variables, and
G. = L. /1 — €2. Note that this level of approximation is only strictly valid in the
case of a circular outer orbit and an inner test particle, neither of which are good
assumptions in our system. The next level of approximation, the octupole-level,
would correctly account for both of these complications. However, the dynamics
are chaotic in the octupole order (Li et al., 2014a). As we aim only to draw first-
order analytical understanding from the secular model (to eventually be confirmed
with full N-body simulations), we work for now in the quadrupole approximation
for greater clarity into the most impactful quantities in this problem.

ZLK oscillations will persist so long as the dominant source of precession in
wy, is due to perturbations from c. As a4, becomes smaller due to tidal migration,
a host of other effects become significant and may suppress the precession from
¢, and thus the ZLK oscillations themselves. For instance, the precession due to
general relativity can be quantified (Eggleton & Kiseleva-Eggleton, 2001; Fabrycky
& Tremaine, 2007):

3G3/2 (mstar + mb)3/2

5/2
ab/ 2(1-¢)

Wh,GR = (6.10)

146



where ¢ here is the speed of light, not to be confused with a quantity associated
with body c. Yee et al. (2018) ruled out the possibility of ZLK oscillations being
active in the present-day HAT-P-11 system, on the basis of general relativity sup-
pressing ZLK precession at HAT-P-11 b’s present-day semimajor axis. Plugging
in values associated with the present-day system, we confirm that ZLK oscilla-
tions are expected to be quenched by GR precession, with @y zix/@bcr ~ 0.8.
Hence, HAT-P-11 b’s large eccentricity cannot be attributed to it currently being
in a high-eccentricity phase of a ZLK oscillation. However, this does not rule out
the possibility of ZLK oscillations having occurred in the past. In order for this to
have been the case, HAT-P-11 b must have originated at a larger semimajor axis.

6.3.2 Tidal Friction

We turn to the process of ZLK migration, which has been invoked to explain the
anomalously high eccentricity and tight orbits of a number of hot Jupiters (see
Wu & Murray (2003), Mardling (2010), Beust et al. (2012) among others). The
idea behind ZLK migration is to combine the concepts of ZLK oscillations and
tidal evolution. During each high-eccentricity phase of the ZLK oscillation, tidal
friction becomes significant due to b’s close approach with the host star.

In this work, we will consider the prescription of equilibrium tides only (Hut,
1981; Eggleton et al., 1998; Mardling & Lin, 2002). In this framework, the strength
of tidal friction is parameterized by the constant time lag 7, which represents the
time lag between the tidal bulge of a body and the line of centers connecting to the
tidal perturber. T may be related (with caution, see Leconte et al. (2010); Lu et al.
(2023)) to the commonly used tidal quality factor Q via

7= (2nQ)! (6.11)

with n the mean motion of the tidal perturber, in this case the host star. We
note that more complex and nuanced tidal models are available. In particular,
for the high-eccentricity ZLK epochs dynamical tides may be a more accurate
prescription (e.g Mardling, 1995; Lai, 2012; Fuller et al., 2014; Vick et al., 2019; Vick
et al., 2023). However, no self-consistent N-body package exists with these more
complex prescriptions. Hence, we restrict ourselves to the simpler equilibrium
tide model in the present work, though we encourage future works to explore the
effect of more complex tidal models.

In the equilibrium tide model, bodies are no longer point particles but rather
are endowed with structure. The two improvements on the point particle model
are the effect of a misaligned tidal bulge and the rotational flattening of each body.
Both are significant to the dynamics of ZLK migration, not only because they act

147



to tighten the orbit of b over time, but also because they both introduce additional
precession terms. For our system, tidal precession is expected to be more relevant,
so we will focus on that aspect. The precession rate associated with tides is given
by (Fabrycky & Tremaine, 2007)

15 +/G(mgtar + mp) 8 + 1267 + &}

8a, (1-¢) (6.12)
11 myp Mgy
X =| —kgar R+ —k; RS],
2L’”star . star my %

where kg, ki, are the tidal Love numbers of the star and planet, respectively.
Figure 6.5 demonstrates the significance of including the effects of tidal friction.
In this figure we consider a system with a central object consistent with HAT-
P-11A and an outer perturber consistent with HAT-P-11 c. The semimajor axis
and eccentricity of HAT-P-11 b are varied, and we analyze where in semimajor
axis-eccentricity space ZLK oscillations are allowed. The present-day orbit of HAT-
P-11 b is also marked. The maroon and gold lines mark where |0z x/@gr| = 1 and
lzix/WTidel = 1, respectively. Towards the upper left (lower semimajor axis and
higher eccentricity) of each line, ZLK oscillations are quenched by the respective
additional effect, while towards the bottom right ZLK oscillations are allowed to be
active. From Equation (6.12), we see that wrig. scales strongly with the eccentricity
of b. As a result, while tides are less influential than GR at low eccentricities,
the opposite is true at higher eccentricities. This is highly impactful for ZLK
oscillations: a system where b is at a sufficiently high semimajor axis will be able
to sustain ZLK oscillations of extremely high amplitude if only GR is considered,
but if tides are accounted for as well during a high-eccentricity epoch the ZLK
effect will be quenched.

Consider now the evolution of a body under the influence of tidal effects
experiencing ZLK oscillations. If octupole level effects are accounted for (Naoz
et al., 2013; Naoz, 2016), the maximum eccentricity of the ZLK oscillations is not
constant; rather, the maxima increase slowly over the octupole timescale (Naoz
etal.,, 2013; Li et al., 2014b). In addition, during each high-eccentricity epoch tides
will shrink the orbit. The result is that over the course of ZLK oscillations, b’s orbit
will move towards the upper left corner of Figure 6.5. Inevitably, at some point
there will be a crossing (mostly likely with the gold line), and ZLK oscillations will
be quenched. Then b is marooned on a high-eccentricity orbit. This state is only
temporary, however, as tides continue to be significant. Now, tidal dissipation
acts efficiently to circularize and shrink the planet’s orbit, until b settles into a
close-in, circular orbit. Tidal circularization conserves angular momentum Ly, so
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Figure 6.5. Comparison of precessions from the ZLK effect to general relativity and
tides in semimajor axis-eccentricity space, using HAT-P-11’s present-day configuration.
The maroon line represents where the precessions due to general relativity and ZLK are
exactly equal, while the gold lines represent tides with HAT-P-11 b’s present day radius
(solid) and tides with twice this radius (dashed). Lines of constant angular momentum
are shown in gray. HAT-P-11 b’s present-day position is shown as a black cross. A planet
experiencing ZLK-induced high-eccentricity migration will move towards the upper left
hand corner in eccentricity-semimajor axis space until it encounters one of the colored
curves, at which point ZLK oscillations are quenched and it follows one of the contours of
constant angular momentum to zero eccentricity.
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b’s evolution through phase space will follow the contour of constant L, (plotted
in grey) intersecting the gold line until the planet reaches zero eccentricity.

Taking this together, the basic idea of our hypothesis is as follows. HAT-P-11
b initially formed at a significantly greater semimajor axis than we see today. The
violent scattering events described in the previous section resulted in a significant
orbital misalignment between HAT-P-11 b and HAT-P-11 ¢, which initiated ZLK
oscillations in HAT-P-11 b’s orbit. Tidal dissipation gradually tightened HAT-P-11
b’s orbit until tidal precession broke the ZLK oscillations, at which point the highly
eccentric HAT-P-11 b began the process of tidal circularization. We propose that
HAT-P-11 b is in this final state, having not yet fully circularized. This is similar
to the story proposed by Beust et al. (2012) to explain the orbit of the similarly
eccentric close-in sub-Neptune GJ 436, but in their case the outer perturber is not
well constrained.

6.3.3 Radius Evolution

It turns out that the story we just elucidated is incomplete, since simple ZLK
migration alone cannot explain HAT-P-11 b’s orbit. This is due to how relatively
close-in HAT-P-11 cis. From Equation (6.8), the precession rate associated with the
ZLK effect scales very strongly with a.. Since a. is small, the precession associated
with ZLK oscillations is strong, and thus very high eccentricities are required for
tides to break the ZLK cycles (e.g., in comparison to GJ 436). Inspection of Figure
6.5 provides a clearer picture. The contour that HAT-P-11 b presently lies on
does not intersect the solid golden line in the phase space shown. While it does
intersect the dark red line denoting suppression of ZLK oscillations due to GR
precession, this mechanism would require suppression of ZLK oscillations at an
eccentricity of just 0.5 at a semimajor axis where tidal damping is slow, and is
not something that we see in our simulations. In order for HAT-P-11 b to have a
constant L path from tidal quenching of ZLK oscillations to its current orbit, we
would have to extend Figure 6.5 well to the right. We find that initializing HAT-
P-11 b at these larger orbital separations typically results in dynamical instability,
and often ejection of HAT-P-11 b. In other words, the quenching of ZLK by
tidal effects in a reasonable initial parameter space cannot bring HAT-P-11 b to
its present-day orbit via tidal circularization. We see that more realistic contours
of constant L terminate significantly closer to the star, sometimes by up to an
order of magnitude. This tendency to overshoot HAT-P-11 b’s present-day orbit is
insensitive to initial conditions and is confirmed with N-body simulations. Thus,
the present-day configuration cannot be explained with traditional ZLK migration
with fixed planet radius and equilibrium tides alone.

However, the planet’s radius can be inflated due to tidal heating during ZLK
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migration. Radius evolution of planets due to tidal heating is a degree of freedom
that is typically unexplored in studies of the ZLK effect. During ZLK oscillations,
HAT-P-11 b will reach very high eccentricities and hence experience many close
pericenter approaches with the host star. During these close approaches, tidal
heating becomes very significant and acts to inflate the planet’s envelope. Radius
inflation from tidal heating is a well-explored concept: it has been invoked to
explain the anomalously large radii of hot Jupiters (Bodenheimer et al., 2001) and
sub-Saturns (Millholland, 2019; Millholland et al., 2020). These works show that
the radius of a sub-Neptune or sub-Saturn can reasonably be inflated over a factor
of two via this mechanism.

This effect may play a significant role in the dynamics of the system, as from
Equation (6.12) tidal precession scales as oc R?. Indeed, we see from the dotted
golden line in Figure 6.5 that increasing the radius of HAT-P-11 b by a factor of
two breaks the ZLK oscillations significantly earlier, and now there does exist a
reasonable contour of constant Ly, that can deliver HAT-P-11 b to its present-day
orbit. Coupled dynamical and thermal evolution of hot Jupiters were explored
in the context of planet-planet scattering by Rozner et al. (2022); Glanz et al.
(2022), who found that accounting for radius inflation significantly accelerated the
formation and destruction of hot Jupiters and enhanced the production of warm
Jupiters. Petrovich (2015) investigated ZLK migration for initially inflated planets
which slowly shrink down. However, fully self-consistent coupled dynamical and
thermal evolution in the context of ZLK migration has not been explored in detail.
Given the uncertainties in our system, we employ a simplistic model for the radius
inflation of HAT-P-11 b in this work, and we defer a more nuanced prescription
for self-consistent thermal and orbital evolution to future work.

Millholland et al. (2020) generated 10,000 MESA models (Paxton et al., 2011),
which modify and build upon the publicly available MESA models for sub-Saturns
developed by Chen & Rogers (2016). These models spanned four principal pa-
rameters: mass M, envelope mass fraction feny, flux from the host star F, and
internal luminosity £?. Each model was then evolved forward in time for 10 Gyr,
after which a final radius R was reported. We fit a subset of the Millholland et al.
(2020) models appropriate to HAT-P-11 b in order to construct a luminosity-radius

ZNote that Millholland et al. (2020) parameterized the tidal luminosity with the factor I' =
log,, [Q(:;—CZOSZE)], where Q' = 3Q/2k; is the reduced tidal quality factor and € is the planetary
obliquity. This is because both Millholland et al. (2020) and their progenitor study Millholland
(2019) focused on obliquity tides. However, we are agnostic to the specific source of tides in this

study, and as such require only the total luminosity deposited at the core-envelope interface.
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relationship using a fourth-order polylogarithmic function:

R L\l L\I
R_E =A [log10 (L_@)] + B|log,, (ﬁ_@)]

2
+C llog10 (Li)] +D [log10 (Li)] (6.13)

+E

where A =523 x10™*, B = 3.37 x 1072, C = 0.801, D = 8.357, and E = 3.596 X 10'.
Here the orbit-averaged tidal luminosity of the planet is given by (Mardling & Lin,
2002):

(L) =~ g, (Zb ) (%)5 (PZ)k_QZZ)

x [% (O (0) + O2a(@)) + Qhs(e) (6.14)
= 2np,Qyha(e) + n2h5(e)],

where Q,, (), (), are functions of the planetary spin axis and present orbital con-
tiguration, while hy, hy, h3, hy, hs are functions of eccentricity. The exact expressions
are given in the Appendix. Note the dependence on both orbital parameters and
the spin axis. Since our code self-consistently tracks the spin and orbital evolution,
this expression correctly accounts for both eccentricity and obliquity tides.

We select from the models generated by Millholland et al. (2020) as follows. Out
of the 10,000 models they generated, we take a slice in mass (20 Mg < M < 25 Mg)
appropriate for the observational constraints on HAT-P-11 b. The value of fe,y is
not at all constrained, but the present-day radius and orbital parameters of HAT-
P-11 b are well-constrained (Yee et al., 2018). It is therefore vital to match these
parameters at the end of our simulations. There is a degeneracy between f.,, and
the value of the tidal quality factor Q in reproducing HAT-P-11 b’s radius at its
present-day orbit, since the observed radius could be equally well-described by a
small envelope mass with efficient dissipation (low Q) or by a large envelope mass
with weaker dissipation (high Q). We assume a fiducial value of Q = 10°, and
then use Equations (6.13) and (6.14) to match the present-day radius of HAT-P-11
b given its present-day orbital parameters. There is some degree of uncertainty
in the precise values of many of the values in Equation (6.14) at the end of our
simulations, but we can make a number of simplifying assumptions to obtain a
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Figure 6.6. Radius-luminosity relationship derived from the models of Millholland et al.
(2020). In blue are 158 of their MESA model results using the cuts described in the main
text. The red line represents our best-fit to the data, using a fourth-order polylogarithmmic
function given in Equation (6.13). The gold vertical line shows the tidal heating at HAT-
P-11 b’s present-day orbital configuration given Q = 10°. The black horizontal lines show
the observational constraints on HAT-P-11 b’s radius. Note that the gold and red lines
intersect with the black line, meaning HAT-P-11 b’s present-day radius is reproduced.

ballpark estimate. Most of the uncertainties lie in the values of Q,, (), and Q,,
which are dot products of the spin vector with the Runge-Lenz vector, orbit normal,
and the cross product of the two former, respectively. If we assume zero planetary
obliquity as expected given significant tidal dissipation (Su & Lai, 2022b), the spin
axis will be aligned with the orbital angular momentum, and Q,,Q, = 0. If we
further assume that the planet rotates at the pseudo-synchronous spin rate, ),
can be calculated. Plugging these values and orbital parameters associated with
HAT-P-11 b’s present-day orbit, along with Q = 10°, gives the present-day tidal
luminosity of HAT-P-11 b. We select a range of fen, such that there is a good
match with this value. We ultimately choose 0.05 < feny < 0.1. With these slices
we consider 158 models. The models we selected, as well as our best-fit line, are
plotted in luminosity-radius space in Figure 6.6.

We now use our fit to the MESA models to evolve HAT-P-11 b’s radius during
the simulations. In the interest of computation time and as our expression is
orbit-averaged, we do not recompute the planet’s radius every timestep. Rather,
radius evolution is computed once per orbit of HAT-P-11 b. Once per orbit, the
orbit-averaged luminosity is calculated and fed into our luminosity-radius relation
Eq. (6.13), and the radius of HAT-P-11 b is correspondingly updated. We again
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emphasize that our prescription for the thermal radius evolution of the planet is
a first-order approximation, where we assume the planet’s radius responds effec-
tively instantaneously to the tidal luminosity. A more realistic prescription would
include a time-delayed response to the tidal heating, and a fully self-consistent
numerical prescription could involve codes that couple the dynamical evolution
of the system to the planet’s thermal evolution. For example, see Glanz et al.
(2022) who coupled outputs from MESA (Paxton et al., 2011) and AMUSE (Portegies
Zwart et al., 2009). While we do not use these nuanced prescriptions in the present
work, we assert that our first-order approximation qualitatively achieves similar
results. As our orbital code tracks tidal luminosity self-consistently, our planet
will ultimately be inflated to the same degree, and the ZLK cycles will be bro-
ken at similar times. The improvement which would likely produce the largest
discrepancy between our model is our choice of equilibrium tides, but we defer
treatment of the more realistic dynamical tide model to future work.

6.3.4 N-body simulations

We investigate the present-day orbit of HAT-P-11 b via ZLK migration through a
suite of N-body simulations using REBOUND. The setup of our numerical simula-
tions are as follows. We initialize HAT-P-11 A and c in their present-day orbital
configurations. We select the best-fit values for the mass, semimajor axis and ec-
centricity of HAT-P-11 ¢ from Table 6.1. The spin-orbit misalignment of HAT-P-11
c is less constrained; we draw from a uniform distribution y.; € {33.3°,50.26°},
where the lower bound is selected from the 30 confidence interval from the obser-
vational posteriors, and the upper bound from the 20 confidence interval of our
four-body scattering simulations. The asymmetric lower bound is selected to en-
compass more of the highly non-Gaussian observational posterior. The nodes are
randomly distributed. HAT-P-11 b is initialized with orbital elements randomly
drawn from uniform distributions informed from the 20 distributions obtained in
our four-body scattering simulations: a, = {0.154 AU, 0.518 AU}, e, = {0.01,0.70}
and ¥, = {1.01°,97.0°}. We initialize the mass with the best-fit value from Table
6.1, and the radius with Equation (6.13).

We note that our scattering simulations often include an extra surviving distant
planet. The impact of distant perturbers on the classic ZLK hierarchical configu-
ration was studied by Best & Petrovich (2022), who found that it generates chaotic
spin-orbit evolution and makes achieving retrograde orbits easier, which would
be favorable to our scenario. However, the first-order dynamics do not change,
so we do not model it in our simulations. We also comment on the possibility of
direct ZLK oscillations occuring between HAT-P-11 ¢ and this surviving distant
perturber. This is a fairly rare occurrence; only 653 simulations, or 14%, result in
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a mutual inclination between HAT-P-11 ¢ and the surviving outer planet greater
than 40°, so ZLK oscillations are rarely triggered. However, for these simulations
where the prerequisite mutual inclination for ZLK cycles is reached, |0z k| > |@arl
so ZLK cycles are in fact active. Nevertheless, the parameter space for a surviving
external planet is large and unconstrained from observation, and it doesn’t change
the dynamics of the inner planets qualitatively. Thus, we do not model this outer
planet in our ZLK simulations.

We also model the effects of general relativity and tides. We use REBOUNDx
(Tamayo et al., 2020a) to model both. For GR precession, we use the gr prescription
(Anderson et al., 1975), appropriate for systems with a dominant central mass. We
consider self-consistent spin, tidal and orbital evolution using the tides_spin
effect (Lu et al., 2023), which provides the ability to evolve the evolution of the
stellar spin axis for consistent spin-orbit misalignment tracking as well. For planet
b, we use fiducial parameters of k, = 0.5, I = 0.25 appropriate for a Uranus-like
planet (Yoder, 1995; Lainey, 2016), and we initialize its spin state as both pseudo-
synchronized and aligned with the orbit. Planet c is considered a point particle,
and the effects of structure are not accounted for. While evolution of the stellar spin
axis is considered as part of the equilibrium tides model, spin-down due to stellar
evolution, which would occur during the early phases of our simulations (Bouvier
etal., 1997), is not modeled. These effects are not expected to be significant for our
simulations. Authors such as Bolmont et al. (2012) and Faridani et al. (2023, 2024)
explored the effects of stellar spin evolution on planetary orbits and only found
meaningful impacts for planets within 2 = 0.05 AU, well within the hypothesized
original orbit of HAT-P-11 b.

Tides on the host star and planet c are not considered, but we set the value
of planet b’s tidal parameter to 7, = 107 years. This is an unrealistically high
value of 7, chosen to minimize computation time: direct N-body simulations with
a realistic 7 value proved to be computationally infeasible. This is a common
practice in numerical simulations (e.g Bolmont et al., 2015; Becker et al., 2020).
Scaling © does not change the qualitative behavior of the system. Neither the
ZLK timescale nor the tidal precession rate, Equations (6.6) and (6.12) respectively,
depend on the value of the tidal parameter. The only dependence on 7 is the rate
of orbital energy drained from tides. Thus, our scaled-up value of 7 serves only to
drain more energy from the planet’s orbit every ZLK cycle (therefore decreasing the
semimajor axis more) and increase the rate at which HAT-P-11 b circularizes once
the ZLK oscillations are ultimately quenched. These both only serve to linearly
modify the timescale in which the planet reaches the final stage of evolution.

We now briefly discuss what realistic values of 7 may be. While the values of
tidal parameters in exoplanets are very poorly constrained, estimates of Neptune’s
7 ~ 1078 years are based on the orbit of its satellites Proteus and Larissa (Zhang
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Figure 6.7. Results from a population synthesis of ZLK simulations. We consider 40
simulations with radius evolution (orange) and 40 with fixed radius (blue). We compare
distributions of semimajor axis, spin-orbit misalignment and mutual inclination. We see
that the fixed radius model cannot generate HAT-P-11 b’s present-day semi-major axis,
but the model with tidally-driven radius inflation can.

& Hamilton, 2007). Therefore, the tidal timescale in the N-body simulations is a
factor ~10% longer than the simulation timescale.

6.3.5 Simulation Results

Figure 6.7 shows distributions of spin-orbit misalighment and eccentricity for a
population synthesis of 100 systems. We initialize each simulation as described in
the previous section and run until the ZLK cycles are quenched and the orbit has
circularized to the present-day eccentricity e, = 0.218. At this point, the simulation
is halted. To illustrate the effects of radius inflation, we also run the same initial
condition but fix the radius of HAT-P-11 b to its present-day value throughout
the course of the simulation. We allow each simulation to run for 10 Myr, which
corresponds to 10 Gyr in when time is rescaled appropriately. 40 simulations
with radius inflation are able to quench ZLK oscillations and circularize in this
timeframe, with the remaining 60 either never initiating ZLK oscillations or being
unable to quench them in time. For the simulations with fixed radius, 40 simula-
tions quench and circularize in time. For the population synthesis that considers
radius inflation, we see that while the best-fit observational values are not the
most favored there is nonetheless a high proportion of simulations that match the
constraints, and we do not require fine-tuning to reproduce our posteriors. The
population synthesis without radius inflation does not exhibit significant differ-
ences in the spin-orbit misalignment or mutual inclination distributions. However,
as expected this model greatly underpredicts the semimajor axis of HAT-P-11 b:
all simulations predict an orbit with a, < 0.045 AU (consistent with the implication
of Figure 6.5).
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Figure 6.8 shows one of our simulations in detail. Table 6.2 lists the initial
orbital parameters of the simulation, as well as the final values of of interest.
During the first phase of the simulation, ZLK oscillations are active and the planet
experiences the characteristic coupled eccentricity and inclination oscillations. At
each high-eccentricity epoch, tides act on the planet to lower its semimajor axis.
The radius evolution of the planet is also plotted, and we see that during each
high-eccentricity epoch the planet inflates to over twice its present-day radius.
Note that the minimum pericenter distance (~0.02 AU) is well outside twice of
the tidal disruption radius (r; = R,(M./M,)'*~0.008 AU), so we do not include
mass loss due to tidal stripping in our model, as the effects are weak (Guillochon
et al., 2011). Later, the ZLK oscillations are damped during a high eccentricity
epoch. Tides continue to act to circularize the planet’s orbit. In the meantime,
the orbit normal of HAT-P-11 b precesses about the invariant plane of the system
(essentially HAT-P-11 c¢’s orbit normal), as expected, resulting in periodic spin-
orbit misalignment oscillations. As expected, the stellar spin axis and the orbit of
HAT-P-11 c do not change significantly over the course of the integration.

We comment again on the interpretation of timescales, given our choice of 7
in order to speed up computations. Please refer to Section 6.3.4 for justification
regarding the choice of an enhanced dissipation rate. The enhanced dissipation
rate affects the phase when tidal dissipation dominates, and thus we scale the
timescales on the right-hand side of the panel to the realistic values accordingly.
Note that with a more realistic tidal time-lag, we would expect to see more spin-
orbit misalignment cycles on the right-hand side of the plot when tides dominate
(since the orbital precession frequency does not depend on tidal dissipation and
shouldn’t be scaled). In addition, we would expect to have more ZLK cycles on the
left-hand side, since each cycle leads to a weaker semi-major axis decay. However,
the qualitative behavior of the evolution is the same.

The age of the HAT-P-11 system is not well-constrained: Yee et al. (2018)
propose an age of 6.5*;7 Gyr, while Morton et al. (2016) present an estimate of
2.69*25° Gyr. Our results are consistent with both estimates of the system age.
Note that the timescale of ZLK migration varied by around an order of magnitude,
depending on initial conditions.

The present-day observational constraints on HAT-P-11 b’s orbit are also shown
on Figure 6.8. Our simulation is able to match all values very well: we reproduce
all observed values within 20 other than semimajor axis, which is well-reproduced
qualitatively. We propose that HAT-P-11 b is currently in this final stage of evo-
lution and is still in the process of tidal circularization. We conclude that ZLK
migration coupled with thermally driven radius evolution is capable of explain-
ing the present-day orbit of HAT-P-11 b remarkably well. Again, we emphasize
that we did not perform an exhaustive parameter space analysis of this system.
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Parameter Initialb Finalb Initial ¢ Final ¢

R (Rgarn) 369 427 N/A N/A
a (AU) 0.19 0.056 41 4.1
e 048 022 065 065
v (°) 82 156 353 354

Table 6.2. Relevant input parameters and output values of the REBOUND simulation shown
in Figure 6.8. The final values are the values at the time corresponding to the black dot in
Figure 6.8, which is where ¢, is equal to the best fit value. The orbit of HAT-P-11 c does
not change significantly over the course of the simulation.

Rather, our aim is to qualitatively show that such a process is capable of reproduc-
ing HAT-P-11 b’s orbit.

We briefly comment on the sensitivity of our results to the value of the tidal
parameter 7, which is almost entirely unconstrained. Of the simulations that
successfully reached HAT-P-11 b’s present-day configuration, the mean evolution
time is 2.44 Gyr and the 20 range is {0.06,16.96} Gyr. The distribution of evo-
lution times is sculpted by the initial configuration of the system. For instance,
configurations that are initialized with a higher mutual inclination tend to reach
the present-day state faster, and vice-versa. The center of the distribution is sen-
sitive to the value of the tidal parameter 7, which shifts the distribution linearly.
We provide a reasonable range of 7 values that are consistent with our simula-
tions by matching the upper limit of our simulation times with the lower limit
of the age estimates provided by Yee et al. (2018), and vice versa. This gives
T € {4.84 X 10711,7.06 X 1078} years as the range of 7 able to reconcile our results
with the reported age of the system. At HAT-P-11 b’s present-day semimajor axis,
this corresponds to Q € {1.5 x 10%,2.20 x 107}.

6.4 Conclusions

We have proposed a two-step process of planet-planet scattering followed by
subsequent ZLK migration to explain the unusual architecture of the HAT-P-11
system. A violent scattering history in which two former planets are ejected
from the system is a viable explanation for the high eccentricity and spin-orbit
misalignment of HAT-P-11 c. Then, the ZLK mechanism follows naturally with
large mutual inclination between HAT-P-11 b and c. We find that traditional
ZLK migration with fixed planetary radius cannot reproduce the orbit of HAT-
P-11 b, but accounting for thermally-driven radius inflation can. Using N-body
simulations, we have verified that this scenario is consistent with all observational
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constraints as well as the estimated age of the system. The HAT-P-11 system is
thus an excellent case study of planet-planet scattering and ZLK migration, both of
which are common effects believed to sculpt the architectures of many planetary
systems.

HAT-P-11 b adds to a growing census of planets on polar orbits around their
host stars (Albrecht et al., 2021) — the exact significance of this peak in the stel-
lar obliquity distribution is sensitive to detection biases and thus has not been
definitively confirmed (Siegel et al., 2023; Dong & Foreman-Mackey, 2023). ZLK
migration triggered by the presence of an external planetary perturber has been
shown to be theoretically capable of generating the peak of perpendicular planets
(Petrovich & Tremaine, 2016), and Vick et al. (2023) demonstrated that if the inner
planet starts on an initially misaligned orbit, then perpendicular planets are pref-
erentially produced. They attributed this primordial misalignment to an inclined
binary companion torquing the protoplanetary disk (Spalding & Batygin, 2014;
Zanazzi & Lai, 2018; Gerbig et al., 2024). We show that planet-planet scattering
can lead to similar ZLK initial conditions for single star systems, and hence we
demonstrate that the interplay between planet-planet scattering and ZLK migra-
tion can easily produce perpendicular planets as well. While spin-orbit misalign-
ment measurements of close-in planets are relatively common, the same cannot be
said of the longer-period giants which would constitute said external perturbers
(Rice et al., 2021). The possibility of more spin-orbit misalighment measurements
of these longer-period planets in the near future will allow more comprehensive
analysis of systems characterized by planet-triggered ZLK migration.

Our study demonstrates the importance of considering the evolution of the
physical characteristics of a planet during ZLK migration, in addition to the or-
bital parameters. In the high-eccentricity epochs of ZLK migration, the planet’s
envelope can inflate due to tidal heating in the interior. This is highly signifi-
cant, affecting not only the timescale of ZLK migration but also the equilibrium
semimajor axis the planet settles at. This is particularly important in the close com-
panion ZLK cases, since the strength of the ZLK perturbations is relatively much
stronger. We show that radius inflation unlocks areas of parameter space which
otherwise would be impossible to access through standard ZLK migration with
fixed radius. HAT-P-11 is one of the first candidates with two confirmed planets in
which ZLK migration is hypothesized to have occurred. A few other systems for
which planet-planet ZLK may be possible have begun to emerge (Beust et al., 2012;
Petrovich et al., 2018; Bardalez Gagliuffi et al., 2021), and as more such systems are
discovered it will be crucial to consider the evolution of the physical parameters of
the planet. During the preparation of this manuscript Yu & Dai (2024) performed
a similar analysis on the WASP-107 system. Their study used a secular orbital
evolution code and also accounted for physical processes such as tidal disruption.
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This work represents another step forward into more nuanced consideration of
coupled structure and orbital evolution.

While our study highlights the importance of considering physical evolution
of the planet, our prescription is a first-order approximation. Given the signif-
icant uncertainties in quantities such as internal composition and tidal quality
factor present in all exoplanetary systems we have not explored more sophisti-
cated models, and assert that our first-order approximation provides sufficient
qualitative insight. However, future work could more deeply consider avenues
such as 1) a more sophisticated tidal model — calculating tidal heating and orbital
evolution based on dynamical tides, which are more accurate for high eccentricity
orbits, 2) coupling tidal heating and radius inflation during orbital evolution (e.g.,
implementing a lag time such that the radius does not respond instantaneously to
tidal forcing, and considering the change in planetary structure when calculating
tidal effects (Ogilvie, 2009)) and 3) considering the effects of atmospheric mass loss
(Vissapragada et al., 2022).

Finally, we note that while it may be tempting to place constraints on quantities
such as the tidal quality factor with this work, this must be done with caution. The
final state of HAT-P-11 b depends on the strength of tidal forcing compared to the
magnitude of the precession induced by the ZLK effect. In practice, this means that
it depends on a complex interplay of the initial semimajor axis, tidal quality factor,
tidal love number, initial mutual inclination, and internal composition, none of
which are well-constrained. To explore such a large parameter space would be a
herculean task, and we again stress that this study does not claim to have done so.
Rather, our work should be viewed more qualitatively as a proof-of-concept that
thermally-driven radius inflation is highly significant towards the final products
of planet-planet ZLK migration.
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6.6 Appendix: Self-Consistent Spin, Tidal and Dy-
namical Equations of Motion

The ZLK migration results in Section 6.3 account for spin and tidal evolution in
the equilibrium tide framework. The equations of motion used are reproduced
from Eggleton et al. (1998), but see also Alexander (1973); Hut (1981); Mardling &
Lin (2002) for a deeper review of equilibrium tide theory. Also see Lu et al. (2023)
for details on the specific implementation.

In addition to point-particle gravity, we consider the acceleration due to the
quadrupole distortion of body 1, which accounts for both spin distortion and tidal
perturbation from another body 2:

(6.15)

@) [5(91 ddQd (@ 6Gm2d]

12) _ 5
fop' = rikes (1 ¥ 27 2F e e

m
with an analogous expression for the quadrupole distortion of body 2 due to
body 1. We also consider the acceleration due to the tidal damping of body 1:

2 .10 2
2 _ 901k |7 m
TF —

L1'1 2 . . )
— m2+m—1)-[3d(d-d)+(dxd—91d)xd], (6.16)

again, with an analogous expression for the tidal damping of body 2.

6.7 Appendix: Orbital Parameter Definitions

In Equation (6.14) several terms relating to the precise orientation of the orbit are
mentioned but not defined. These are provided here. First, we define the spin
vector Q, which parameterizes both the direction and magnitude of the planet’s
rotation. Next, we define two vectors e,h. These are the Runge-Lenz vector
(pointing in the direction of periastron, with magnitude equal to the eccentricity)
and the orbital angular momentum vector. We define a third vector q = e X h. We
can thus define the following projections of the spin axis:

Q=0-60,=Q-hQ,=Q-§ (6.17)
The functions of eccentricity h;(e) are also given:

_ 1+ (3/2)e* + (1/8)e*

hl(e) (1 _ 62)9/2

(6.18)
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hs(e) =

1+ (9/2)e* + (5/8)e*

hZ(e) = (1 _ 62)9/2

1+ 3¢ + (3/8)e*

h3(€) = (1 _ 62)9/2

1+ (15/2) + (45/8)¢* + (5/16)e
(1—e2)"

hy(e) =

1+ (31/2)é® + (255/8)e* + (185/16)¢ + (25/64)e8

(1 — ¢2)15/2
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Chapter 7

Conclusion

"If I look back I am lost."
— Daenerys I Targaryen
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7.1 Summary

In summary, this dissertation details my own personal contributions to the fields of
numerical methods, spin-orbit dynamics and planetary structure evolution. These
contributions have stood upon the shoulders of giants, and it is my hope that this
work itself serves as a stepping stone for future explorations. In this Conclusion,
I enumerate several exciting areas of future development that will build upon my
thesis work.

7.2 The Search for Planet Nine

During the period in which this thesis was developed, various lines of evidence
emerged, some supporting and others challenging the existence of Planet 9. Baty-
gin et al. (2024) and Siraj et al. (2024) have performed detailed numerical simula-
tions that reproduce the observed apsidal clustering of TNOs and heavily favor
the presence of a distant outer planet. These results have refined the predicted
orbit and on-sky position of the putative Planet 9. On the other hand, Napier et al.
(2021) and Bernardinelli et al. (2022) contend that there is no need for the existence
of a Planet 9. They assert that the observed TNO clustering can be explained via
observational bias alone. Verifying the existence of Planet 9 is crucial to confirming
the hypothesis discussed in Chapter 4.

An unambiguous detection of Planet 9 is in principle possible, and would
set the debate to rest. Rice & Laughlin (2020) developed a promising algorithm
to stack frames from the Transiting Exoplanet Survey Satellite (TESS), a method
capable of directly detecting a faint Planet 9. The search is ongoing, and the
astronomy community awaits the results with bated breath. Recently, Rowan-
Robinson (2022) claimed the detection of a Planet 9 candidate in IRAS data. The
candidate is inconsistent with the best-fit models of Planet 9’s orbit, and thus is
unlikely to be the cause of the observed apsidal alignment seen. The discovery
nonetheless merits great excitement, and I am confident that many more Planet 9
candidates will be discovered in the near future. The imminent launch of the Vera
Rubin Observatory will be a great asset to the hunt.

7.3 The James Webb Space Telescope

The James Webb Space Telescope (JWST) launched on December 25, 2021, and has
already revolutionized the precision and quality of astronomical data. One partic-
ularly exciting prospect is JWST’s ability to parse out the deviations from a perfect
spherical shape of a transiting exoplanet with extraordinarily precise lightcurves.

165



This is an incredibly powerful probe of an exoplanet’s rotation rate and internal
composition (Hellard et al., 2019). With this same technique, it is possible to detect
transiting planetary rings (Akinsanmi et al., 2018) and exomoons (Cassese et al.,
2024b). Regarding planetary oblateness specifically, we have previously lacked
the instrumental precision to place meaningful constraints on planetary interior
structure. JWST has changed that, and consequently in very recent years a num-
ber of publicly-available codes have been developed with the aim of extracting
planetary oblateness from JWST lightcurves. These include squishyplanet (Cass-
ese et al., 2024a), eclipsoid (Dholakia et al., 2024) and greenlaturn (Price et al.,
2024). The very first such oblateness measurements have been made on Kepler-51
d (Lammers & Winn, 2024a) and Kepler-167 e (Liu et al., 2024). Many more of these
measurements are planned. Our understanding of exoplanetary interior structure
is, at present, almost entirely unconstrained observationally. However, we stand
on the precipice of a revolution — this knowledge gap will soon be shattered.
Another of JWST’s many astounding capabilities is detailed and nuanced trans-
mission spectroscopy of exoplanetary atmospheres. Transmission spectra reveal
vital information about atmospheric composition, effective temperature, and in
some cases may even hold the keys to detecting biosignatures and hence life. For
the work in this dissertation, the most exciting prospect is using transmission
spectra as a probe of interior structure. Sing et al. (2024) and Welbanks et al.
(2024) probed the atmosphere of the warm Neptune WASP-107 b, and by using
disequilibrium chemistry models are able to constrain a high internal heat flux
and massive core. They attribute this high internal heat to tidal heating, marking
the first definitive observational detection of this phenomenon. The imprint of
tidal heating on exoplanetary demographics has only been discussed theoretically
— finally, the prospect of verification with real data does not seem so far-fetched.

74 GAIA Data Release 4

In studies that attempt to link dynamics to demographics, one massive unknown
degree of freedom is the orbital architectures of distant planets. Jupiter-mass
planets at orbital separations of 1-10 AU are extremely difficult to detect via any
method currently available to us. Without the knowledge of outer exoplanetary
system architectures, dynamicists are missing a crucial piece of the puzzle.

In the very near future, this will change. The Gaia satellite (Gaia Collaboration
et al., 2016) is mapping the positions, distances, and motions of over a billion stars
in the Milky Way with unprecedented precision. The next public release of Gaia
Data, Data Release Four, will present the full astrometric time-series data for every
star in the Gaia catalogue. According to Perryman et al. (2014), over 70,000 such
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planets may be detected based on Gaia’s theoretical capabilities.

7.5 Towards a Unified Theory of System Formation

As dynamicists, our ultimate goal is to construct a truly unified theory to ex-
plain how planetary systems form. On both observational and theoretical fronts,
tremendous progress has been made in the past five years by our brightest and
most talented researchers. I am lucky enough to call many of them my friends and
colleagues.

Measurement of the 3-D architecture of exoplanetary systems is critical to
understanding their formation pathways. Rice et al. (2021) has spearheaded this
effort with the SOLES survey, designed to comprehensively characterize the stellar
obliquity distribution. As more comprehensive data streams in, the picture of
planetary formation becomes more and more intriguing. For instance, Rice et al.
(2022); Wang et al. (2024) find that warm Jupiters are much more aligned than
hot Jupiters, suggesting that the two seemingly similar planet types in fact form
through different mechanisms. Saunders et al. (2024) found that planets around
evolved stars are rapidly re-aligned, suggesting that stellar evolution may play a
crucial role in system architectures.

As the quantity and quality of the data improves, so does the nuance of theoret-
ical models. The study of Faridani et al. (2024) points to the importance of stellar
evolution in compact multi-planet systems. In fact, Zanazzi et al. (2024) shows
that stellar evolution may explain many puzzles in the stellar obliquity evolution
of hot Jupiters. Models of planetary interiors and tidal theory have more than
kept up. Sur et al. (2024) have developed a next-generation numerical code for
computing the internal structures of giant planets with great nuance. The quality
of exoplanet data will soon reach a point where such models are necessary. Au-
thors such as Dewberry (2024) and Sun et al. (2023) have leveraged these interior
structure models to derive ever more detailed tidal theories.

Planetary obliquity is a particularly exciting field to study, as direct detection
is now possible as shown by authors such as Bryan et al. (2018) and Poon et al.
(2024a). These observational breakthroughs stand ready to verify the powerful
theoretical predictions made in recent years. For instance, Millholland et al. (2024)
demonstrated that resonant chain planets should very frequently be endowed
with high obliquities, and Su & Lai (2022a) predict the same for super-Earths.
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7.6 Final Thoughts

The future is bright. In the next few years, cutting-edge instruments stand poised
to enact paradigm shifts in our understanding of exoplanets. Countless new
problems will be raised and answered, to the end of a truly unified theory of
planetary system formation. We truly are lucky to study exoplanets at this special
time.

"Now, bring me that horizon"
— Captain Jack Sparrow
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